Stress concentration in elastic bodies with multiple concentrators
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2014), pp. 45-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The stress concentration is considered in the case of two and more elastic concentrators in an elastic body. A single concentrator, in the absence of the others, creates its stress field calculated using an external field by means of the concentration tensor-operator. The stress field from several concentrators is replaced by the interaction of the stress fields of each of the concentrators. The tensor theory of stress concentration from several concentrators of various nature, approximately featuring the interaction of concentrators, is studied. An approximate analytical expression for the stress concentration tensor is found in the plane with two circular holes and is compared with known solutions.
@article{VMUMM_2014_6_a6,
     author = {V. I. Gorbachev and R. R. Gadelev},
     title = {Stress concentration in elastic bodies with multiple concentrators},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {45--50},
     year = {2014},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_6_a6/}
}
TY  - JOUR
AU  - V. I. Gorbachev
AU  - R. R. Gadelev
TI  - Stress concentration in elastic bodies with multiple concentrators
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 45
EP  - 50
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_6_a6/
LA  - ru
ID  - VMUMM_2014_6_a6
ER  - 
%0 Journal Article
%A V. I. Gorbachev
%A R. R. Gadelev
%T Stress concentration in elastic bodies with multiple concentrators
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 45-50
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_6_a6/
%G ru
%F VMUMM_2014_6_a6
V. I. Gorbachev; R. R. Gadelev. Stress concentration in elastic bodies with multiple concentrators. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2014), pp. 45-50. http://geodesic.mathdoc.fr/item/VMUMM_2014_6_a6/

[1] Gorbachëv V.I., “Metod tenzorov Grina dlya resheniya kraevykh zadach teorii uprugosti neodnorodnykh sred”, Vychisl. mekhan. deformiruemogo tverdogo tela, 1991, no. 2, 61–76

[2] Kech V., Teodoresku P., Vvedenie v teoriyu obobschennykh funktsii s prilozheniyami v tekhnike, Mir, M., 1978 | MR

[3] Pobedrya B.E., Lektsii po tenzornomu analizu, 2-e izd., Izd-vo MGU, M., 1979

[4] Pobedrya B.E., Gorbachëv V.I., “Kontsentratsiya napryazhenii i deformatsii v kompozitakh”, Mekhan. kompoz. mat-lov., 1984, no. 2, 207–214

[5] Gorbachëv V.I., Mikhailov A.L., “Tenzor kontsentratsii napryazhenii dlya sluchaya $n$-mernogo uprugogo prostranstva so sfericheskim vklyucheniem”, Vestn. Mosk. un-ta. Matem. Mekhan., 1993, no. 2, 78–83 | Zbl

[6] Muskhelishvili N.I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti, Nauka, M., 1966 | MR

[7] Savin G.N., Raspredelenie napryazhenii okolo otverstii, Naukova dumka, Kiev, 1968 | MR

[8] Kosmodamianskii A.S., Ploskaya zadacha teorii uprugosti dlya plastin s otverstiyami, vyrezami i vystupami, Vischa shkola, Kiev, 1975

[9] Ling C.B., “On the stresses in a plate contaning two circular holes”, J. Appl. Phys., 19:1 (1948), 77–82 | DOI | MR

[10] Podstrigach Ya.S., “Napruzhennya v poloschini, oslalenii dvoma nerivnimi krugovimi otvorami”, Dokl. AN USSR, 1953, no. 6, 456–460 | Zbl

[11] Podstrigach Ya.S., “Napryazheniya okolo dvukh neravnykh krugovykh otverstii v ploskom pole”, Nauch. zap. In-ta mashin. i avtomat., 4, AN USSR, Kiev, 1955, 60–61

[12] Savruk N.A., “Napryazheniya v ploskosti, oslablennoi dvumya neravnymi krugovymi otverstiyami, pri izgibe”, Nauch. zap. Lvov. politekhn. in-ta, 29 (1955), 100–105