Properties of the mixed modulus of smoothness of positive order in a mixed metric
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2014), pp. 31-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Basic properties of the mixed modulus of smoothness of positive order in a mixed metric are considered.
@article{VMUMM_2014_6_a4,
     author = {M. K. Potapov and B. V. Simonov},
     title = {Properties of the mixed modulus of smoothness of positive order in a mixed metric},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {31--40},
     year = {2014},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_6_a4/}
}
TY  - JOUR
AU  - M. K. Potapov
AU  - B. V. Simonov
TI  - Properties of the mixed modulus of smoothness of positive order in a mixed metric
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 31
EP  - 40
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_6_a4/
LA  - ru
ID  - VMUMM_2014_6_a4
ER  - 
%0 Journal Article
%A M. K. Potapov
%A B. V. Simonov
%T Properties of the mixed modulus of smoothness of positive order in a mixed metric
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 31-40
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_6_a4/
%G ru
%F VMUMM_2014_6_a4
M. K. Potapov; B. V. Simonov. Properties of the mixed modulus of smoothness of positive order in a mixed metric. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2014), pp. 31-40. http://geodesic.mathdoc.fr/item/VMUMM_2014_6_a4/

[1] Nikolskii S.M., “Funktsii s dominiruyuschei smeshannoi proizvodnoi, udovletvoryayuschei kratnomu usloviyu Geldera”, Sib. matem. zhurn., 4:6 (1963), 1342–1364

[2] Bakhvalov N.S., “Teoremy vlozheniya dlya klassov funktsii s neskolkimi ogranichennymi proizvodnymi”, Vestn. Mosk. un-ta. Matem. Mekhan., 1963, no. 3, 7–16 | Zbl

[3] Potapov M.K., Simonov B.V., Tikhonov S.Yu., “Constructive characteristics of mixed moduli of smoothness of positive orders”, Progress in analysis, Proc. 8th Congr. ISAAC (Moscow, Peoples' Friendship University of Russia), v. 2, 2012, 314–327 | MR

[4] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR

[5] Potapov M.K., “Priblizhenie uglom i teoremy vlozheniya”, Math. balk., 2 (1972), 183–198 | Zbl

[6] Taberski R., “Differences, moduli and derivatives of fractional orders”, Comment. Math. Prace Mat., 19:2 (1976/77), 389–400 | MR

[7] Simonov B.V, Tikhonov S.Yu., “Teoremy vlozheniya v konstruktivnoi teorii priblizhenii”, Matem. sb., 199:9 (2008), 107–146 | DOI | MR