The arithmetic computational complexity of linear transforms
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2014), pp. 24-31

Voir la notice de l'article provenant de la source Math-Net.Ru

Quadratic and superquadratic estimates are obtained for the complexity of computations of some linear transforms by circuits over the base $\{x+y \}\cup \{ax: \vert a \vert \leq C \}$ consisting of addition and scalar multiplications on bounded constants. Upper bounds $O(n\log n)$ of computation complexity are obtained for the linear base $\{ax+by: a,b \in {\mathbb R}\}$. Lower bounds $\Theta(n\log n)$ are obtained for the monotone linear base $\{ax+by: a, b > 0\}$.
@article{VMUMM_2014_6_a3,
     author = {S. B. Gashkov},
     title = {The arithmetic computational complexity of linear transforms},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {24--31},
     publisher = {mathdoc},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_6_a3/}
}
TY  - JOUR
AU  - S. B. Gashkov
TI  - The arithmetic computational complexity of linear transforms
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 24
EP  - 31
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_6_a3/
LA  - ru
ID  - VMUMM_2014_6_a3
ER  - 
%0 Journal Article
%A S. B. Gashkov
%T The arithmetic computational complexity of linear transforms
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 24-31
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_6_a3/
%G ru
%F VMUMM_2014_6_a3
S. B. Gashkov. The arithmetic computational complexity of linear transforms. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2014), pp. 24-31. http://geodesic.mathdoc.fr/item/VMUMM_2014_6_a3/