The arithmetic computational complexity of linear transforms
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2014), pp. 24-31
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Quadratic and superquadratic estimates are obtained for the complexity of computations of some linear transforms by circuits over the base $\{x+y \}\cup \{ax: \vert a \vert \leq C \}$ consisting of addition and scalar multiplications on bounded constants. Upper bounds $O(n\log n)$ of computation complexity are obtained for the linear base $\{ax+by: a,b \in {\mathbb R}\}$. Lower bounds $\Theta(n\log n)$ are obtained for the monotone linear base $\{ax+by: a, b > 0\}$.
			
            
            
            
          
        
      @article{VMUMM_2014_6_a3,
     author = {S. B. Gashkov},
     title = {The arithmetic computational complexity of linear transforms},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {24--31},
     publisher = {mathdoc},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_6_a3/}
}
                      
                      
                    S. B. Gashkov. The arithmetic computational complexity of linear transforms. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2014), pp. 24-31. http://geodesic.mathdoc.fr/item/VMUMM_2014_6_a3/
