The arithmetic computational complexity of linear transforms
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2014), pp. 24-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Quadratic and superquadratic estimates are obtained for the complexity of computations of some linear transforms by circuits over the base $\{x+y \}\cup \{ax: \vert a \vert \leq C \}$ consisting of addition and scalar multiplications on bounded constants. Upper bounds $O(n\log n)$ of computation complexity are obtained for the linear base $\{ax+by: a,b \in {\mathbb R}\}$. Lower bounds $\Theta(n\log n)$ are obtained for the monotone linear base $\{ax+by: a, b > 0\}$.
@article{VMUMM_2014_6_a3,
     author = {S. B. Gashkov},
     title = {The arithmetic computational complexity of linear transforms},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {24--31},
     year = {2014},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_6_a3/}
}
TY  - JOUR
AU  - S. B. Gashkov
TI  - The arithmetic computational complexity of linear transforms
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 24
EP  - 31
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_6_a3/
LA  - ru
ID  - VMUMM_2014_6_a3
ER  - 
%0 Journal Article
%A S. B. Gashkov
%T The arithmetic computational complexity of linear transforms
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 24-31
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_6_a3/
%G ru
%F VMUMM_2014_6_a3
S. B. Gashkov. The arithmetic computational complexity of linear transforms. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2014), pp. 24-31. http://geodesic.mathdoc.fr/item/VMUMM_2014_6_a3/

[1] Riordan Dzh., Vvedenie v kombinatornyi analiz, IL, M., 1963

[2] Gulden Ya., Dzhekson D., Perechislitelnaya kombinatorika, Nauka, M., 1990 | MR

[3] Knut D., Iskusstvo programmirovaniya, v. 2, Vilyams, M., 2000 | MR

[4] Gashkov S.B., “O slozhnosti vychisleniya nekotorykh klassov mnogochlenov neskolkikh peremennykh”, Vestn. Mosk. un-ta. Matem. Mekhan., 1988, no. 1, 89–91

[5] Morgenstern J., “Note on lower bound of the linear complexity of the fast Fourier transform”, J. Assoc. Comput. Mach., 20:2 (1973), 305–306 | DOI | MR | Zbl

[6] Faddeev D.K., Sominskii I.S., Zadachi po vysshei algebre, Lan, SPb., 1999 | MR

[7] Cantor D., Kaltofen E., “On fast multiplication of polynomials over arbitrary algebras”, Acta Inform., 28 (1991), 693–701 | DOI | MR | Zbl

[8] Schönhage A., “Schnelle multiplikation von polynomen über körpern der charakteristik 2”, Acta Inform., 7 (1977), 395–398 | DOI | MR | Zbl

[9] von zur Gathen J., Gerhard J., Modern computer algebra, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[10] Akho F., Khopkroft Dzh., Ulman Dzh., Proektirovanie i analiz vychislitelnykh algoritmov, Mir, M., 1979 | MR

[11] Cooley J., Tukew J., “An algorithm for the machine calculation of complex Fourier series”, Math. Comput., 19 (1965), 297–301 | DOI | MR | Zbl

[12] Boyar J., Find M.C., Cancellation-free circuits: An approach for proving superlinear lower bounds for linear Boolean operators, 2012, arXiv: 1207.5321

[13] Selezneva S.N., “Nizhnyaya otsenka slozhnosti nakhozhdeniya polinomov bulevykh funktsii v klasse skhem s razdelennymi peremennymi”, 11-i Mezhdunar. seminar “Diskretnaya matematika i ee prilozheniya”, Izd-vo MGU, M., 2012, 216–218

[14] Grigorev D.Yu., “Nizhnie otsenki v algebraicheskoi slozhnosti vychislenii”, Zap. nauch. seminarov LOMI, 118, 1982, 25–82 | Zbl

[15] Alon N., Karchmer M., Wigderson A., “Linear circuits over $GF(2)$”, SIAM J. Comput., 19:6 (1990), 1064–1067 | DOI | MR | Zbl

[16] Gashkov S.B., Kochergin V.V., “Ob additivnykh tsepochkakh vektorov, ventilnykh skhemakh i slozhnosti vychisleniya stepenei”, Metody diskret. analiza v teorii grafov i slozhnosti, 52, Novosibirsk, 1992, 22–40 | Zbl

[17] Gashkov S.B., Chubarikov V.N., Arifmetika. Algoritmy. Slozhnost vychislenii, Vysshaya shkola, M., 2000