To the problem of rod heating
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2014), pp. 10-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The construction of control boundary conditions is considered in the paper for the problem of heating a one-dimensional rod up to specified temperature. Two modifications of the method proposed by A. V. Fursikov are presented, these modifications allow us to take into account restrictions posed onto the structure of solution and the construl. Calculation results are presented for heating elements located both outside and inside of the rod. The obtained algorithms admit natural generalizations to a wide class of equations including nonlinear Navier–Stokes type equations and also problems of stabilization by initial data and the right-hand side.
@article{VMUMM_2014_6_a1,
     author = {E. Yu. Vedernikova and A. A. Kornev},
     title = {To the problem of rod heating},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {10--16},
     year = {2014},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_6_a1/}
}
TY  - JOUR
AU  - E. Yu. Vedernikova
AU  - A. A. Kornev
TI  - To the problem of rod heating
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 10
EP  - 16
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_6_a1/
LA  - ru
ID  - VMUMM_2014_6_a1
ER  - 
%0 Journal Article
%A E. Yu. Vedernikova
%A A. A. Kornev
%T To the problem of rod heating
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 10-16
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_6_a1/
%G ru
%F VMUMM_2014_6_a1
E. Yu. Vedernikova; A. A. Kornev. To the problem of rod heating. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2014), pp. 10-16. http://geodesic.mathdoc.fr/item/VMUMM_2014_6_a1/

[1] Kornev A.A., “Metod asimptoticheskoi stabilizatsii po nachalnym dannym k zadannoi traektorii”, Zhurn. vychisl. matem. i matem. fiz., 46:1 (2006), 37–51 | MR | Zbl

[2] Vasilev F.P., Metody optimizatsii, Faktorial Press, M., 2002 | MR

[3] Fursikov A.V., “Stabilizability of two-dimensional Navier–Stokes equations with help of boundary feedback control”, J. Math. Fluid Mech., 3 (2001), 259–301 | DOI | MR | Zbl

[4] Kornev A.A., “Numerical aspects of a problem asymptotic stabilization by the right-hand side”, Russ. J. Numer. Anal. Math. Modelling, 23:4 (2008), 407–422 | DOI | MR | Zbl

[5] Ivanchikov A.A., Kornev A.A., Ozeritskii A.V., “O novom podkhode k resheniyu zadach asimptoticheskoi stabilizatsii”, Zhurn. vychisl. matem. i matem. fiz., 49:12 (2009), 2167–2181 | MR

[6] Fursikov A.V., Kornev A.A., “Feedback stabilization for Navier–Stokes equations: Theory and calculations”, Mathematical Aspects of Fluid Mechanics, Lect. Notes Ser., Cambridge University Press, Cambridge, 2012, 130–172 | MR | Zbl

[7] Chizhonkov E.V., “Numerical aspects of one stabilization method”, Russ. J. Numer. Anal. Math. Modelling, 18:5 (2003), 363–376 | DOI | MR | Zbl

[8] Chizhonkov E.V., “Ob operatorakh proektirovaniya dlya chislennoi stabilizatsii”, Vychisl. metody i program., 2004, no. 5, 161–169