@article{VMUMM_2014_5_a9,
author = {E. A. Zaval'nyuk},
title = {Local structure of minimal networks in {A.} {D.~Alexandrov} spaces},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {54--58},
year = {2014},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a9/}
}
E. A. Zaval'nyuk. Local structure of minimal networks in A. D. Alexandrov spaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2014), pp. 54-58. http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a9/
[1] Gilbert E.N., Pollak H.O., “Steiner minimal trees”, SIAM J. Appl. Math., 16 (1968), 1–29 | DOI | MR | Zbl
[2] Ivanov A.O., Tuzhilin A.A., “Geometriya minimalnykh setei i odnomernaya problema Plato”, Uspekhi matem. nauk, 47:2 (1992), 53–115 | MR | Zbl
[3] Ivanov A.O., Tuzhilin A.A., “Razvetvlennye geodezicheskie v normirovannykh prostranstvakh”, Izv. RAN. Ser. matem., 66:5 (2002), 33–82 | DOI | MR | Zbl
[4] Ivanov A.O., Khong V.L., Tuzhilin A.A., “Ploskie seti, lokalno minimalnye i kriticheskie dlya mankhettenskogo funktsionala dliny”, Zap. nauch. seminarov LOMI, 279, 2001, 111–140 | Zbl
[5] Ilyutko D.P., “Razvetvlennye ekstremali funktsionala $\lambda$-normirovannoi dliny”, Matem. sb., 197:5 (2006), 75–98 | DOI | MR | Zbl
[6] Swanepoel K.J., “The local Steiner problem in normed planes”, Networks, 36 (2000), 104–113 | 3.0.CO;2-K class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[7] Ivanov A.O., Tuzhilin A.A., Teoriya ekstremalnykh setei, In-t kompyuternykh issledovanii, M.–Izhevsk, 2003 | MR
[8] Innami N., Naya S., “A comparison theorem for Steiner minimum trees in surfaces with curvature bounded below”, Tohoku Math. J., 65:1 (2013), 131–157 | DOI | MR | Zbl
[9] Burago D.Yu., Burago Yu.D., Ivanov S.V., Kurs metricheskoi geometrii, In-t kompyuternykh issledovanii, M.–Izhevsk, 2004 | MR
[10] Ambrosio L., Tilli P., Topics on analysis in metric spaces, Oxford University Press, Oxford, 2004 | MR | Zbl