Local structure of minimal networks in A. D. Alexandrov spaces
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2014), pp. 54-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The full description is obtained for local structure of minimal networks in Alexandrov spaces.
@article{VMUMM_2014_5_a9,
     author = {E. A. Zaval'nyuk},
     title = {Local structure of minimal networks in {A.} {D.~Alexandrov} spaces},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {54--58},
     year = {2014},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a9/}
}
TY  - JOUR
AU  - E. A. Zaval'nyuk
TI  - Local structure of minimal networks in A. D. Alexandrov spaces
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 54
EP  - 58
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a9/
LA  - ru
ID  - VMUMM_2014_5_a9
ER  - 
%0 Journal Article
%A E. A. Zaval'nyuk
%T Local structure of minimal networks in A. D. Alexandrov spaces
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 54-58
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a9/
%G ru
%F VMUMM_2014_5_a9
E. A. Zaval'nyuk. Local structure of minimal networks in A. D. Alexandrov spaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2014), pp. 54-58. http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a9/

[1] Gilbert E.N., Pollak H.O., “Steiner minimal trees”, SIAM J. Appl. Math., 16 (1968), 1–29 | DOI | MR | Zbl

[2] Ivanov A.O., Tuzhilin A.A., “Geometriya minimalnykh setei i odnomernaya problema Plato”, Uspekhi matem. nauk, 47:2 (1992), 53–115 | MR | Zbl

[3] Ivanov A.O., Tuzhilin A.A., “Razvetvlennye geodezicheskie v normirovannykh prostranstvakh”, Izv. RAN. Ser. matem., 66:5 (2002), 33–82 | DOI | MR | Zbl

[4] Ivanov A.O., Khong V.L., Tuzhilin A.A., “Ploskie seti, lokalno minimalnye i kriticheskie dlya mankhettenskogo funktsionala dliny”, Zap. nauch. seminarov LOMI, 279, 2001, 111–140 | Zbl

[5] Ilyutko D.P., “Razvetvlennye ekstremali funktsionala $\lambda$-normirovannoi dliny”, Matem. sb., 197:5 (2006), 75–98 | DOI | MR | Zbl

[6] Swanepoel K.J., “The local Steiner problem in normed planes”, Networks, 36 (2000), 104–113 | 3.0.CO;2-K class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[7] Ivanov A.O., Tuzhilin A.A., Teoriya ekstremalnykh setei, In-t kompyuternykh issledovanii, M.–Izhevsk, 2003 | MR

[8] Innami N., Naya S., “A comparison theorem for Steiner minimum trees in surfaces with curvature bounded below”, Tohoku Math. J., 65:1 (2013), 131–157 | DOI | MR | Zbl

[9] Burago D.Yu., Burago Yu.D., Ivanov S.V., Kurs metricheskoi geometrii, In-t kompyuternykh issledovanii, M.–Izhevsk, 2004 | MR

[10] Ambrosio L., Tilli P., Topics on analysis in metric spaces, Oxford University Press, Oxford, 2004 | MR | Zbl