Bases of trigonometric polynomials consisting of shifts of Dirichlet kernels
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2014), pp. 35-40
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The system of shifts of Dirichlet kernel on $\frac{2k\pi}{2n+1}$, $k=0,\pm1,\dots,\pm n$, and the system of such shifts of the conjugate Dirichlet kernel with $\frac12$ are orthogonal bases in the space of trigonometric polynomials of degree $n$. The system of shifts of kernels $\sum_{k=m}^n \cos kx$ and $\sum_{k=m}^n\sin kx$ on $\frac{2k\pi}{n-m+1}$, $k=0,1,\dots,n-m$, is an orthogonal basis in the space of trigonometric polynomials with the components from $m\geqslant1$ tо $n$. There is no orthogonal basis of shifts of any function in this space for $0$.
			
            
            
            
          
        
      @article{VMUMM_2014_5_a5,
     author = {T. P. Lukashenko},
     title = {Bases of trigonometric polynomials consisting of shifts of {Dirichlet} kernels},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {35--40},
     publisher = {mathdoc},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a5/}
}
                      
                      
                    TY - JOUR AU - T. P. Lukashenko TI - Bases of trigonometric polynomials consisting of shifts of Dirichlet kernels JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2014 SP - 35 EP - 40 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a5/ LA - ru ID - VMUMM_2014_5_a5 ER -
T. P. Lukashenko. Bases of trigonometric polynomials consisting of shifts of Dirichlet kernels. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2014), pp. 35-40. http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a5/
