Bases of trigonometric polynomials consisting of shifts of Dirichlet kernels
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2014), pp. 35-40
Cet article a éte moissonné depuis la source Math-Net.Ru
The system of shifts of Dirichlet kernel on $\frac{2k\pi}{2n+1}$, $k=0,\pm1,\dots,\pm n$, and the system of such shifts of the conjugate Dirichlet kernel with $\frac12$ are orthogonal bases in the space of trigonometric polynomials of degree $n$. The system of shifts of kernels $\sum_{k=m}^n \cos kx$ and $\sum_{k=m}^n\sin kx$ on $\frac{2k\pi}{n-m+1}$, $k=0,1,\dots,n-m$, is an orthogonal basis in the space of trigonometric polynomials with the components from $m\geqslant1$ tо $n$. There is no orthogonal basis of shifts of any function in this space for $0.
@article{VMUMM_2014_5_a5,
author = {T. P. Lukashenko},
title = {Bases of trigonometric polynomials consisting of shifts of {Dirichlet} kernels},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {35--40},
year = {2014},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a5/}
}
T. P. Lukashenko. Bases of trigonometric polynomials consisting of shifts of Dirichlet kernels. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2014), pp. 35-40. http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a5/
[1] Novikov I.Ya., Protasov V.Yu., Skopina M.A., Teoriya vspleskov, Fizmatlit, M., 2005 | MR
[2] Smolentsev N.K., Veivlet-analiz v MATLAB, DMK Press, M., 2010
[3] Bari N.K., Trigonometricheskie ryady, GIFML, M., 1961 | MR
[4] Zigmund A., Trigonometricheskie ryady, v. 1, Mir, M., 1965 | MR
[5] Edvards R., Ryady Fure v sovremennom izlozhenii, v. 1, Mir, M., 1985 | MR
[6] Lukashenko T.P., “O koeffitsientakh sistem razlozheniya, podobnykh ortogonalnym”, Matem. sb., 188:12 (1997), 57–72 | DOI | MR | Zbl