Bases of trigonometric polynomials consisting of shifts of Dirichlet kernels
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2014), pp. 35-40

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of shifts of Dirichlet kernel on $\frac{2k\pi}{2n+1}$, $k=0,\pm1,\dots,\pm n$, and the system of such shifts of the conjugate Dirichlet kernel with $\frac12$ are orthogonal bases in the space of trigonometric polynomials of degree $n$. The system of shifts of kernels $\sum_{k=m}^n \cos kx$ and $\sum_{k=m}^n\sin kx$ on $\frac{2k\pi}{n-m+1}$, $k=0,1,\dots,n-m$, is an orthogonal basis in the space of trigonometric polynomials with the components from $m\geqslant1$$n$. There is no orthogonal basis of shifts of any function in this space for $0$.
@article{VMUMM_2014_5_a5,
     author = {T. P. Lukashenko},
     title = {Bases of trigonometric polynomials consisting of shifts of {Dirichlet} kernels},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {35--40},
     publisher = {mathdoc},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a5/}
}
TY  - JOUR
AU  - T. P. Lukashenko
TI  - Bases of trigonometric polynomials consisting of shifts of Dirichlet kernels
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 35
EP  - 40
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a5/
LA  - ru
ID  - VMUMM_2014_5_a5
ER  - 
%0 Journal Article
%A T. P. Lukashenko
%T Bases of trigonometric polynomials consisting of shifts of Dirichlet kernels
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 35-40
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a5/
%G ru
%F VMUMM_2014_5_a5
T. P. Lukashenko. Bases of trigonometric polynomials consisting of shifts of Dirichlet kernels. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2014), pp. 35-40. http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a5/