Natural operators on tensor fields
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2014), pp. 58-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we classify natural operators on tensor fields of different types. We abstain from any assumptions such as symmetry or additional structures and consider arbitrary tensor fields.
@article{VMUMM_2014_5_a10,
     author = {E. G. Puninskiy},
     title = {Natural operators on tensor fields},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {58--62},
     year = {2014},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a10/}
}
TY  - JOUR
AU  - E. G. Puninskiy
TI  - Natural operators on tensor fields
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 58
EP  - 62
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a10/
LA  - ru
ID  - VMUMM_2014_5_a10
ER  - 
%0 Journal Article
%A E. G. Puninskiy
%T Natural operators on tensor fields
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 58-62
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a10/
%G ru
%F VMUMM_2014_5_a10
E. G. Puninskiy. Natural operators on tensor fields. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2014), pp. 58-62. http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a10/

[1] Chacon R.V., Fomenko A.T., “Recursion formulas for the Lie integral”, Adv. Math., 88:2 (1991), 200–257 | DOI | MR | Zbl

[2] Chacon R.V., Fomenko A.T., “Stokes' formula for Lie algebra valued connection and curvature forms”, Adv. Math., 88:2 (1991), 258–300 | DOI | MR | Zbl

[3] Fomenko A.T., Tuzhilin A.A., Elements of the Geometry and Topology of Minimal Surfaces in Three-Dimensional Space, Translations of Mathematical Monographs, 88, Amer. Math. Soc., 1991, 142 pp. | MR | MR

[4] Matveev S.V., Fomenko A.T., Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, Izd-vo MGU, M., 1991 | MR

[5] Trofimov V.V., Fomenko A.T., Algebra i geometriya integriruemykh gamiltonovykh sistem differentsialnykh uravnenii, Faktorial, M., 1995 | MR

[6] Mischenko A.S., Fomenko A.T., Kratkii kurs differentsialnoi geometrii i topologii, Klassicheskii universitetskii uchebnik, Nauka, Fiziko-matematicheskaya literatura, M., 2004 | MR

[7] Kolář I., Michor P.W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 ; Kolar I., Michor P.V., Slovak Ya., Estestvennye operatsii v differentsialnoi geometrii, Timpani, Kiev, 2001 | MR | Zbl

[8] Schouten J., Ricci salculus 2d edition thoroughly revised and enlarged, Springer-Verlag, N.Y., 1954 | MR

[9] Nijenhuis A., “Natural bundles and their general properties”, Differential Geometry, Kinokuniya, Tokyo, 1972, 317–334 | MR

[10] Nijenhuis A., “Geometric aspects of formal differential operations on tensor fields”, Proc. Int. Congress Math. (Edinburgh, 1958), Cambridge University Press, Cambridge, 1960, 463–469 | MR

[11] Newlander A., Nirenberg L., “Complex analytic coordinates in almost-complex manifolds”, Ann. Math., 65 (1957), 391–404 | DOI | MR | Zbl

[12] Bogoyavlenskii O.I., “Obschie algebraicheskie tozhdestva dlya tenzorov Niienkheisa i Khaantzhesa”, Izv. RAN. Ser. matem., 68:6 (2004), 71–84 | DOI | MR

[13] Terng C.L., “Natural vector bundles and natural differential operators”, Amer. J. Math., 100 (1978), 775–828 | DOI | MR

[14] Kirillov A.A., “Invariantnye operatsii nad geometricheskimi velichinami”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 16, VINITI, M., 1980, 3–29

[15] Palais R.S., Terng C.L., “Natural bundles have finite order”, Topology, 16 (1977), 271–277 | DOI | MR | Zbl

[16] Krupka D., “Elementary theory of differential invariants”, Arch. Mat. (Brno), 14:4 (1978), 207–214 | MR | Zbl

[17] Markl M., “Natural differential operators and graph complexes”, Diff. Geom. Appl., 27 (2009), 257–278 | DOI | MR | Zbl

[18] Katsylo P.I., Timashev D.A., “Estestvennye differentsialnye operatsii na mnogoobraziyakh: algebraicheskii podkhod”, Matem. sb., 199:10 (2008), 63–86 | DOI | MR | Zbl

[19] Frölicher A., Nijenhuis A., “Theory of vector valued differential forms. Part I”, Ind. Math., 18 (1956), 338–359 | DOI | MR

[20] Marle C.-M., “The Schouten–Nijenhuis bracket and interior products”, J. Geom. and Phys., 23 (1997), 350–359 | DOI | MR | Zbl

[21] Michor P.W., “Remarks on the Schouten–Nijenhuis bracket”, Suppl. ai Rend. del Circolo Mat. Palermo. Ser. II, 16 (1987), 207–215 | MR | Zbl