@article{VMUMM_2014_5_a10,
author = {E. G. Puninskiy},
title = {Natural operators on tensor fields},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {58--62},
year = {2014},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a10/}
}
E. G. Puninskiy. Natural operators on tensor fields. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2014), pp. 58-62. http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a10/
[1] Chacon R.V., Fomenko A.T., “Recursion formulas for the Lie integral”, Adv. Math., 88:2 (1991), 200–257 | DOI | MR | Zbl
[2] Chacon R.V., Fomenko A.T., “Stokes' formula for Lie algebra valued connection and curvature forms”, Adv. Math., 88:2 (1991), 258–300 | DOI | MR | Zbl
[3] Fomenko A.T., Tuzhilin A.A., Elements of the Geometry and Topology of Minimal Surfaces in Three-Dimensional Space, Translations of Mathematical Monographs, 88, Amer. Math. Soc., 1991, 142 pp. | MR | MR
[4] Matveev S.V., Fomenko A.T., Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, Izd-vo MGU, M., 1991 | MR
[5] Trofimov V.V., Fomenko A.T., Algebra i geometriya integriruemykh gamiltonovykh sistem differentsialnykh uravnenii, Faktorial, M., 1995 | MR
[6] Mischenko A.S., Fomenko A.T., Kratkii kurs differentsialnoi geometrii i topologii, Klassicheskii universitetskii uchebnik, Nauka, Fiziko-matematicheskaya literatura, M., 2004 | MR
[7] Kolář I., Michor P.W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 ; Kolar I., Michor P.V., Slovak Ya., Estestvennye operatsii v differentsialnoi geometrii, Timpani, Kiev, 2001 | MR | Zbl
[8] Schouten J., Ricci salculus 2d edition thoroughly revised and enlarged, Springer-Verlag, N.Y., 1954 | MR
[9] Nijenhuis A., “Natural bundles and their general properties”, Differential Geometry, Kinokuniya, Tokyo, 1972, 317–334 | MR
[10] Nijenhuis A., “Geometric aspects of formal differential operations on tensor fields”, Proc. Int. Congress Math. (Edinburgh, 1958), Cambridge University Press, Cambridge, 1960, 463–469 | MR
[11] Newlander A., Nirenberg L., “Complex analytic coordinates in almost-complex manifolds”, Ann. Math., 65 (1957), 391–404 | DOI | MR | Zbl
[12] Bogoyavlenskii O.I., “Obschie algebraicheskie tozhdestva dlya tenzorov Niienkheisa i Khaantzhesa”, Izv. RAN. Ser. matem., 68:6 (2004), 71–84 | DOI | MR
[13] Terng C.L., “Natural vector bundles and natural differential operators”, Amer. J. Math., 100 (1978), 775–828 | DOI | MR
[14] Kirillov A.A., “Invariantnye operatsii nad geometricheskimi velichinami”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 16, VINITI, M., 1980, 3–29
[15] Palais R.S., Terng C.L., “Natural bundles have finite order”, Topology, 16 (1977), 271–277 | DOI | MR | Zbl
[16] Krupka D., “Elementary theory of differential invariants”, Arch. Mat. (Brno), 14:4 (1978), 207–214 | MR | Zbl
[17] Markl M., “Natural differential operators and graph complexes”, Diff. Geom. Appl., 27 (2009), 257–278 | DOI | MR | Zbl
[18] Katsylo P.I., Timashev D.A., “Estestvennye differentsialnye operatsii na mnogoobraziyakh: algebraicheskii podkhod”, Matem. sb., 199:10 (2008), 63–86 | DOI | MR | Zbl
[19] Frölicher A., Nijenhuis A., “Theory of vector valued differential forms. Part I”, Ind. Math., 18 (1956), 338–359 | DOI | MR
[20] Marle C.-M., “The Schouten–Nijenhuis bracket and interior products”, J. Geom. and Phys., 23 (1997), 350–359 | DOI | MR | Zbl
[21] Michor P.W., “Remarks on the Schouten–Nijenhuis bracket”, Suppl. ai Rend. del Circolo Mat. Palermo. Ser. II, 16 (1987), 207–215 | MR | Zbl