@article{VMUMM_2014_5_a0,
author = {O. A. Shpyrko},
title = {The derived $p$-length of finite $p$-soluble groups},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--7},
year = {2014},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a0/}
}
O. A. Shpyrko. The derived $p$-length of finite $p$-soluble groups. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2014), pp. 3-7. http://geodesic.mathdoc.fr/item/VMUMM_2014_5_a0/
[1] Monakhov V.S., Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006 | MR
[2] Hall P., Higman G., “On the $p$-length of $p$-soluble groups and reduction theorems for Burnside's problem”, Proc. London Math. Soc., 3 (1956), 1–42 | DOI | MR | Zbl
[3] Shemetkov L.A., “O $p$-dline proizvolnykh konechnykh grupp”, Dokl. AN BSSR, XIII:5 (1969), 394–395 | MR | Zbl
[4] Huppert B., Endliche Gruppen I, Walter de Gruyter, Berlin–Heidelberg–N.Y., 1967 | MR
[5] Anischenko A.G., Monakhov V.S., “Tsentralnye peresecheniya i $p$-dlina $p$-razreshimykh grupp”, Dokl. AN BSSR, XXI:11 (1977), 968–971
[6] Mazurov V.D., “O $p$-dline razreshimykh grupp”, VI Vsesoyuz. simp. po teorii grupp, Kiev, 1980, 50–60 | Zbl
[7] Zhurtov A.Kh., Syskin S.A., “O gruppakh Shmidta”, Sib. matem. zhurn., XXVIII:2 (1987), 74–78 | MR | Zbl
[8] Shpyrko O.A., “O proizvodnoi $\pi$-dline konechnoi $\pi$-razreshimoi gruppy”, Tavrich. vestn. Matem. i Inform., 2005, no. 1, 49–54
[9] Monakhov V.S., Shpyrko O.A., “O maksimalnykh podgruppakh v konechnykh $\pi$-razreshimykh gruppakh”, Vestn. Mosk. un-ta. Matem. Mekhan., 2009, no. 6, 3–8 | MR | Zbl
[10] Kazarin L.S., “Soluble product of groups”, Infinite groups 94, Walter de Gruyter, Berlin–N.Y., 1995, 111–123 | MR