Numerical solution of boundary integral equations on curvilinear polygons
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2014), pp. 55-57
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An approximate method of solving the integral equation of the potential theory for the Dirichlet problem for the Laplace operator is proposed in the case when the domains are curvilinear polygons with piecewise analytic boundaries. The proposed method is exponentially convergent with respect to the number of quadrature nodes in use.
			
            
            
            
          
        
      @article{VMUMM_2014_4_a8,
     author = {I. O. Arushanyan},
     title = {Numerical solution of boundary integral equations on curvilinear polygons},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {55--57},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a8/}
}
                      
                      
                    TY - JOUR AU - I. O. Arushanyan TI - Numerical solution of boundary integral equations on curvilinear polygons JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2014 SP - 55 EP - 57 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a8/ LA - ru ID - VMUMM_2014_4_a8 ER -
I. O. Arushanyan. Numerical solution of boundary integral equations on curvilinear polygons. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2014), pp. 55-57. http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a8/
