Numerical solution of boundary integral equations on curvilinear polygons
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2014), pp. 55-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An approximate method of solving the integral equation of the potential theory for the Dirichlet problem for the Laplace operator is proposed in the case when the domains are curvilinear polygons with piecewise analytic boundaries. The proposed method is exponentially convergent with respect to the number of quadrature nodes in use.
@article{VMUMM_2014_4_a8,
     author = {I. O. Arushanyan},
     title = {Numerical solution of boundary integral equations on curvilinear polygons},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {55--57},
     year = {2014},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a8/}
}
TY  - JOUR
AU  - I. O. Arushanyan
TI  - Numerical solution of boundary integral equations on curvilinear polygons
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 55
EP  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a8/
LA  - ru
ID  - VMUMM_2014_4_a8
ER  - 
%0 Journal Article
%A I. O. Arushanyan
%T Numerical solution of boundary integral equations on curvilinear polygons
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 55-57
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a8/
%G ru
%F VMUMM_2014_4_a8
I. O. Arushanyan. Numerical solution of boundary integral equations on curvilinear polygons. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2014), pp. 55-57. http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a8/

[1] Kress R., Linear integral equations, Springer, Heidelberg, 2012

[2] Bremer J., Rokhlin V., “Efficient discretization of Laplace boundary integral equations on polygonal domains”, J. Comput. Phys., 229 (2010), 2507–2525 | DOI | MR | Zbl

[3] Graham I.G., Chandler G.A., “High-order methods for linear functionals of solutions of second kind integral equations”, SIAM J. Numer. Anal., 25:5 (1988), 1118–1137 | DOI | MR | Zbl

[4] Helsing J., Ojala R., “Corner singularities for elliptic problems: integral equations, graded meshes, quadrature, and compressed inverse preconditioning”, J. Comput. Phys., 227 (2008), 8820–8840 | DOI | MR | Zbl

[5] Kress R., “A Nyström method for boundary integral equations in domains with corners”, Numer. Math., 58:2 (1990), 145–161 | DOI | MR | Zbl

[6] Arushanyan I.O., “Semeistvo kvadraturnykh formul dlya chislennogo resheniya granichnykh integralnykh uravnenii”, Vychisl. metody i programmir., 14 (2013), 461–467

[7] Mazya V.G., “Granichnye integralnye uravneniya”, Itogi nauki i tekhniki, 27, VINITI, M., 1988, 131–228

[8] Zargaryan S.S., Mazya V.G., “Ob asimptotike reshenii integralnykh uravnenii teorii potentsiala v okrestnosti uglovykh tochek kontura”, Prikl. matem. i mekhan., 48:1 (1984), 169–174 | MR