Numerical solution of boundary integral equations on curvilinear polygons
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2014), pp. 55-57

Voir la notice de l'article provenant de la source Math-Net.Ru

An approximate method of solving the integral equation of the potential theory for the Dirichlet problem for the Laplace operator is proposed in the case when the domains are curvilinear polygons with piecewise analytic boundaries. The proposed method is exponentially convergent with respect to the number of quadrature nodes in use.
@article{VMUMM_2014_4_a8,
     author = {I. O. Arushanyan},
     title = {Numerical solution of boundary integral equations on curvilinear polygons},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {55--57},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a8/}
}
TY  - JOUR
AU  - I. O. Arushanyan
TI  - Numerical solution of boundary integral equations on curvilinear polygons
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 55
EP  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a8/
LA  - ru
ID  - VMUMM_2014_4_a8
ER  - 
%0 Journal Article
%A I. O. Arushanyan
%T Numerical solution of boundary integral equations on curvilinear polygons
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 55-57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a8/
%G ru
%F VMUMM_2014_4_a8
I. O. Arushanyan. Numerical solution of boundary integral equations on curvilinear polygons. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2014), pp. 55-57. http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a8/