Additivity of homological dimensions for tensor products of some Banach algebras
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2014), pp. 32-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that if $A=C(\Omega)$, where $\Omega$ is an infinite metrizable compact space such that some finite-order iterated derived set of $\Omega$ is empty, then for every unital Banach algebra $B$ the global dimensions and the bidimensions of the Banach algebras $A\mathop{\widehat{\otimes}} B$ and $B$ are related by $\mathop{\mathrm{dg}} A\mathop{\widehat{\otimes}} B=2+\mathop{\mathrm{dg}} B$ and $\mathop{\mathrm{db}} A\mathop{\widehat{\otimes}} B=2+\mathop{\mathrm{db}} B$. Thus, a partial extension of Selivanov's result is obtained.
@article{VMUMM_2014_4_a4,
     author = {S. B. Tabaldyev},
     title = {Additivity of homological dimensions for tensor products of some {Banach} algebras},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {32--37},
     year = {2014},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a4/}
}
TY  - JOUR
AU  - S. B. Tabaldyev
TI  - Additivity of homological dimensions for tensor products of some Banach algebras
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 32
EP  - 37
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a4/
LA  - ru
ID  - VMUMM_2014_4_a4
ER  - 
%0 Journal Article
%A S. B. Tabaldyev
%T Additivity of homological dimensions for tensor products of some Banach algebras
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 32-37
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a4/
%G ru
%F VMUMM_2014_4_a4
S. B. Tabaldyev. Additivity of homological dimensions for tensor products of some Banach algebras. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2014), pp. 32-37. http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a4/

[1] Tabaldyev S.B., “Additivnost gomologicheskikh razmernostei dlya nekotorogo klassa banakhovykh algebr”, Funkts. analiz i pril., 40:3 (2006), 93–95 | DOI | MR | Zbl

[2] Selivanov Yu.V., “O znacheniyakh, prinimaemykh globalnoi razmernostyu v nekotorykh klassakh banakhovykh algebr”, Vestn. Mosk. un-ta. Matem. Mekhan., 1975, no. 1, 37–42 | Zbl

[3] Golovin Yu.O., Khelemskii A.Ya., “Gomologicheskaya razmernost nekotorykh modulei nad tenzornym proizvedeniem banakhovykh algebr”, Vestn. Mosk. un-ta. Matem. Mekhan., 1977, no. 1, 54–61 | Zbl

[4] Krichevets A.N., “Vychislenie globalnoi razmernosti tenzornykh proizvedenii banakhovykh algebr i odno obobschenie teoremy Fillipsa”, Matem. zametki, 31:2 (1982), 187–202 | MR | Zbl

[5] Pugach L.I., “Gomologicheskie svoistva funktsionalnykh algebr i analiticheskie polidiski v ikh prostranstvakh maksimalnykh idealov”, Rev. roum. math. pures et appl., 31 (1986), 347–356 | MR | Zbl

[6] Selivanov Yu.V., “Homological dimensions of tensor products of Banach algebras”, Banach Algebras'97, eds. E. Albrecht, M. Mathieu, Walter de Gruyter, Berlin, 1998, 441–459 | MR | Zbl

[7] Selivanov Yu.V., Kogomologii banakhovykh i blizkikh k nim algebr, Dokt. dis., M., 2002

[8] Tabaldyev S.B., “Some Banach algebras of global dimension two”, Bull. London Math. Soc., 37 (2005), 927–932 | DOI | MR | Zbl

[9] Khelemskii A.Ya., Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR

[10] Khelemskii A.Ya., “Nizshie znacheniya, prinimaemye globalnoi gomologicheskoi razmernostyu funktsionalnykh banakhovykh algebr”, Tr. Ceminara im. I. G. Petrovskogo, 3, Izd-vo MGU, M., 1978, 223–242

[11] Pott S., “An account on the global dimension theorem of A. Ya. Helemskii”, Ann. univ. sarav., 9 (1999), 155–194 | MR | Zbl

[12] Khelemskii A.Ya., Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo MGU, M., 1986 | MR

[13] Selivanov Yu.V., “Biproektivnye banakhovy algebry”, Izv. AN SSSR. Ser. matem., 43:5 (1979), 1159–1174 | MR | Zbl

[14] Kuratovskii K., Topologiya, v. 1, Mir, M., 1966 | MR