Isomorphisms of stable linear groups over associative rings containing $\frac{1}{2}$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2014), pp. 28-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Stable linear groups over arbitrary assosiative rings with $\frac{1}{2}$ are considered. The action of an isomorphism between these groups on the elementary stable subgroup is described.
@article{VMUMM_2014_4_a3,
     author = {A. S. Atkarskaya},
     title = {Isomorphisms of stable linear groups over associative rings containing $\frac{1}{2}$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {28--32},
     year = {2014},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a3/}
}
TY  - JOUR
AU  - A. S. Atkarskaya
TI  - Isomorphisms of stable linear groups over associative rings containing $\frac{1}{2}$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 28
EP  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a3/
LA  - ru
ID  - VMUMM_2014_4_a3
ER  - 
%0 Journal Article
%A A. S. Atkarskaya
%T Isomorphisms of stable linear groups over associative rings containing $\frac{1}{2}$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 28-32
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a3/
%G ru
%F VMUMM_2014_4_a3
A. S. Atkarskaya. Isomorphisms of stable linear groups over associative rings containing $\frac{1}{2}$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2014), pp. 28-32. http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a3/

[1] Schreier O., van der Waerden V.L., “Die Automorphismen der projektiven Gruppen”, Abh. Math. Sem. Univ. Hamburg, 6 (1928), 303–322 | DOI | MR | Zbl

[2] Dieudonne J., “On the automorphisms of the classical groups”, Mem. Amer. Math. Soc., 2, 1951, 1–195 | MR

[3] Rickart S.E., “Isomorphic group of linear transformations, I”, Amer. J. Math., 72 (1950), 451–464 | DOI | MR | Zbl

[4] Shi-jian Yan, “Linear groups over a ring”, Chinese Math., 7:2 (1965), 163–179 | MR

[5] Golubchik I.Z., Mikhalev A.V., “Izomorfizmy polnoi lineinoi gruppy nad assotsiativnym koltsom”, Vestn. Mosk. un-ta. Matem. Mekhan., 1983, no. 3, 61–72 | Zbl

[6] Zelmanov E.I., “Izomorfizmy lineinykh grupp nad assotsiativnym koltsom”, Sib. matem. zhurn., 26:4 (1985), 49–67 | Zbl

[7] Golubchik I.Z., Lineinye gruppy nad assotsiativnymi koltsami, Dokt. dis., Ufa, 1997

[8] Bunina E.I., Avtomorfizmy i elementarnaya ekvivalentnost grupp Shevalle i drugikh proizvodnykh struktur, Dokt. dis., M., 2010

[9] Hahn A.J., O'Meara O.T., The Classical Groups and K-theory, Springer-Verlag, Berlin–N.Y., 1989 | MR | Zbl

[10] Abrams G., “Infinite matrix types which determine Morita equivalence”, Arch. Math., 46:1 (1986), 33–37 | DOI | MR | Zbl