Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2014), pp. 18-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An integrable system that is a billiard in a domain bounded by confocal ellipses and hyperbolas is studied. This system arises in the description of the motion of a point inside this domain with natural reflection from the boundary. The topological invariant of Liouville equivalence of such systems, namely, the Fomenko–Zieschang molecule, is calculated using a new method developed by the author.
@article{VMUMM_2014_4_a2,
     author = {V. V. Fokicheva},
     title = {Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {18--27},
     year = {2014},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a2/}
}
TY  - JOUR
AU  - V. V. Fokicheva
TI  - Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 18
EP  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a2/
LA  - ru
ID  - VMUMM_2014_4_a2
ER  - 
%0 Journal Article
%A V. V. Fokicheva
%T Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 18-27
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a2/
%G ru
%F VMUMM_2014_4_a2
V. V. Fokicheva. Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2014), pp. 18-27. http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a2/

[1] Kozlov V.V., Treschev D.V., Billiardy. Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo MGU, M., 1991 | MR

[2] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, RKhD, Izhevsk, 1999 | MR

[3] Birkgof Dzh.D., Dinamicheskie sistemy, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999

[4] Bolsinov A.V., Fomenko A.T., “Traektornaya klassifikatsiya geodezicheskikh potokov dvumernykh ellipsoidov. Zadacha Yakobi traektorno ekvivalentna integriruemomu sluchayu Eilera v dinamike tverdogo tela”, Funkts. analiz i ego pril., 29:3 (1995), 1–15 | MR | Zbl

[5] Dragovic V., Radnovic M., “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4–5 (2009), 479–494 | DOI | MR | Zbl

[6] Dragovich V., Radnovich M., Integriruemye billiardy, kvadriki i mnogomernye porizmy Ponsele, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2010

[7] Arnold V.I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[8] Fomenko A.T., Tsishang Kh., “O tipichnykh topologicheskikh svoistvakh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 378–407 | Zbl

[9] Fomenko A.T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, Uspekhi matem. nauk, 44:1(265) (1989), 145–173 | MR

[10] Fomenko A.T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | Zbl

[11] Gutkin E., “Billiard dynamics: a survey with the emphasis on open problems”, Regul. Chaotic Dyn., 8:1 (2003), 1–13 | DOI | MR | Zbl

[12] Fokicheva V.V., “Opisanie osobennostei sistemy “bilyard v ellipse””, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 5, 31–34 | MR | Zbl

[13] Kudryavtseva E.A., Nikonov I.M., Fomenko A.T., “Maksimalno simmetrichnye kletochnye razbieniya poverkhnostei i ikh nakrytiya”, Matem. sb., 199:9 (2008), 3–96 | DOI | MR | Zbl