@article{VMUMM_2014_4_a1,
author = {E. O. Kantonistova},
title = {Integer lattices of action-angle variables for {\textquotedblleft}spherical pendulum{\textquotedblright} system},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {6--17},
year = {2014},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a1/}
}
E. O. Kantonistova. Integer lattices of action-angle variables for “spherical pendulum” system. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2014), pp. 6-17. http://geodesic.mathdoc.fr/item/VMUMM_2014_4_a1/
[1] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999 | MR
[2] Fomenko A.T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Dokl. AN SSSR, 287:5 (1986), 1071–1075 | MR | Zbl
[3] Fomenko A.T., Tsishang Kh., “O topologii trekhmernykh mnogoobrazii, voznikayuschikh v gamiltonovoi mekhanike”, Dokl. AN SSSR, 294:2 (1987), 283–287 | MR | Zbl
[4] Cushman R.H., Bates L.M., Global aspects of classical integrable systems, Birkhauser, Basel, 1997 | MR | Zbl
[5] Cushman R.H., Duistermaat J.J., “The quantum mechanical spherical pendulum”, Bull. Amer. Math. Soc. (N.S.), 19:2 (1988), 475–479 | DOI | MR | Zbl
[6] Pussen V., Lektsii po teoreticheskoi mekhanike, v. 2, IL, M., 1949
[7] Kantonistova E.O., “Tselochislennye reshetki peremennykh deistviya dlya obobschennogo sluchaya Lagranzha”, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 1, 54–58 | MR | Zbl