Asymptotic growth of codimensions of identities of associative algebras
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2014), pp. 54-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Numerical characteristics of identities of associative and non-associative algebras are studied in the paper. It is announced that the sequence of codimensions of an arbitrary associative PI-algebra asymptotically increases and that this is not true in the general non-associative case.
@article{VMUMM_2014_3_a8,
     author = {A. Giambruno and M. V. Zaicev},
     title = {Asymptotic growth of codimensions of identities of associative algebras},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {54--56},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_3_a8/}
}
TY  - JOUR
AU  - A. Giambruno
AU  - M. V. Zaicev
TI  - Asymptotic growth of codimensions of identities of associative algebras
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 54
EP  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_3_a8/
LA  - ru
ID  - VMUMM_2014_3_a8
ER  - 
%0 Journal Article
%A A. Giambruno
%A M. V. Zaicev
%T Asymptotic growth of codimensions of identities of associative algebras
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 54-56
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_3_a8/
%G ru
%F VMUMM_2014_3_a8
A. Giambruno; M. V. Zaicev. Asymptotic growth of codimensions of identities of associative algebras. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2014), pp. 54-56. http://geodesic.mathdoc.fr/item/VMUMM_2014_3_a8/

[1] Bakhturin Yu.A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR

[2] Giambruno A., Zaicev M., Polynomial Identities and Asymptotic Methods, Mathematical Surveys and Monographs, 122, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR | Zbl

[3] Krakowski D., Regev A., “The polynomial identities of the Grassman algebra”, Trans. Amer. Math. Soc., 181 (1973), 429–438 | MR | Zbl

[4] Maltsev Yu.N., “Bazis tozhdestv algebry verkhnetreugolnykh matrits”, Algebra i logika, 10 (1971), 393–400 | MR | Zbl

[5] Regev A., “Existence of polynomial identities in $A\otimes B$”, Bull. Amer. Math. Soc., 77:6 (1971), 1067–1069 | DOI | MR | Zbl

[6] Latyshev V.N., “K teoreme Regeva o tozhdestvakh tenzornogo proizvedeniya PI-algebr”, Uspekhi matem. nauk, 27:4 (1972), 213–214 | MR | Zbl

[7] Kemer A.R., “Shpekhtovost T-idealov s polinomialnym rostom korazmernostei”, Sib. matem. zhurn., 19 (1978), 54–69 | Zbl

[8] Regev A., “Codimensions and trace codimensions of matrices are asymptotically equal”, Isr. J. Math., 47 (1984), 246–250 | DOI | MR | Zbl

[9] Giambruno A., Zaicev M., “Exponential codimension growth of P.I. algebras: an exact estimate”, Adv. Math., 142 (1999), 221–243 | DOI | MR | Zbl

[10] Drensky V., “Relations for the cocharacter sequences of T-ideals”, Proc. Int. Conf. on Algebra Honoring A. Malcev, Contemp. Math., 131, 1992, 285–300 | DOI | MR | Zbl

[11] Gordienko A.S., “Gipoteza Regeva i kokharaktery tozhdestv assotsiativnykh algebr PI-eksponenty 1 i 2”, Matem. zametki, 83:6 (2008), 815–824 | DOI | Zbl

[12] Gordienko A.S., “Regev's conjecture and codimensions of P.I. algebras”, Acta Appl. Math., 108 (2009), 33–55 | DOI | MR | Zbl

[13] Berele A., Regev A., “Codimensions of products and intersections of verbally prime T-ideals”, Isr. J. Math., 103 (1998), 17–28 | DOI | MR | Zbl

[14] Giambruno A., Zaicev M., “Minimal varieties of exponential growth”, Adv. Math., 174 (2003), 31–323 | DOI | MR

[15] Berele A., “Properties of hook Schur functions with applications to p.i. algebras”, Adv. Appl. Math., 41:1 (2008), 52–75 | DOI | MR | Zbl