@article{VMUMM_2014_3_a7,
author = {T. I. Krasnova},
title = {The conjunction complexity asymptotic of self-correcting circuits for monotone symmetric functions with threshold~$2$},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {50--54},
year = {2014},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_3_a7/}
}
TY - JOUR AU - T. I. Krasnova TI - The conjunction complexity asymptotic of self-correcting circuits for monotone symmetric functions with threshold $2$ JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2014 SP - 50 EP - 54 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMUMM_2014_3_a7/ LA - ru ID - VMUMM_2014_3_a7 ER -
%0 Journal Article %A T. I. Krasnova %T The conjunction complexity asymptotic of self-correcting circuits for monotone symmetric functions with threshold $2$ %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2014 %P 50-54 %N 3 %U http://geodesic.mathdoc.fr/item/VMUMM_2014_3_a7/ %G ru %F VMUMM_2014_3_a7
T. I. Krasnova. The conjunction complexity asymptotic of self-correcting circuits for monotone symmetric functions with threshold $2$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2014), pp. 50-54. http://geodesic.mathdoc.fr/item/VMUMM_2014_3_a7/
[1] Lupanov O.B., Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, Izd-vo MGU, M., 1984
[2] Redkin H.P., Diskretnaya matematika, Fizmatlit, M., 2009
[3] Redkin H.P., Nadezhnost i diagnostika skhem, Izd-vo MGU, M., 1992
[4] Krasnova T.I., “Inversionnaya slozhnost samokorrektiruyuschikhsya skhem dlya odnoi posledovatelnosti bulevykh funktsii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 3, 53–56 | MR
[5] Redkin H.P., “Asimptoticheski minimalnye samokorrektiruyuschiesya skhemy dlya odnoi posledovatelnosti bulevykh funktsii”, Diskretnyi analiz i issledovanie operatsii, 3:2 (1996), 62–79 | MR | Zbl
[6] Grinchuk M.I., “O monotonnoi slozhnosti porogovykh funktsii”, Sb. nauch. tr., Metody diskretnogo analiza v teorii grafov i slozhnosti, 52, no. 2, In-t matematiki SO RAN, Novosibirsk, 1992, 41–48 | MR | Zbl