The conjunction complexity asymptotic of self-correcting circuits for monotone symmetric functions with threshold $2$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2014), pp. 50-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is stated that the conjunction complexity $L_k^{\&}(f^n_2)$ of monotone symmetric Boolean functions $f_2^n(x_1,\ldots,x_n)=\bigvee \limits_{1\leq i realized by $k$-self-correcting circuits in the basis $B=\{\&,-\}$ asymptotically equals $(k+2)n$ for growing $n$ when the price of a reliable conjunctor is $\geq k+2$.
@article{VMUMM_2014_3_a7,
     author = {T. I. Krasnova},
     title = {The conjunction complexity asymptotic of self-correcting circuits for monotone symmetric functions with threshold~$2$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {50--54},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_3_a7/}
}
TY  - JOUR
AU  - T. I. Krasnova
TI  - The conjunction complexity asymptotic of self-correcting circuits for monotone symmetric functions with threshold $2$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 50
EP  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_3_a7/
LA  - ru
ID  - VMUMM_2014_3_a7
ER  - 
%0 Journal Article
%A T. I. Krasnova
%T The conjunction complexity asymptotic of self-correcting circuits for monotone symmetric functions with threshold $2$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 50-54
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_3_a7/
%G ru
%F VMUMM_2014_3_a7
T. I. Krasnova. The conjunction complexity asymptotic of self-correcting circuits for monotone symmetric functions with threshold $2$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2014), pp. 50-54. http://geodesic.mathdoc.fr/item/VMUMM_2014_3_a7/

[1] Lupanov O.B., Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, Izd-vo MGU, M., 1984

[2] Redkin H.P., Diskretnaya matematika, Fizmatlit, M., 2009

[3] Redkin H.P., Nadezhnost i diagnostika skhem, Izd-vo MGU, M., 1992

[4] Krasnova T.I., “Inversionnaya slozhnost samokorrektiruyuschikhsya skhem dlya odnoi posledovatelnosti bulevykh funktsii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 3, 53–56 | MR

[5] Redkin H.P., “Asimptoticheski minimalnye samokorrektiruyuschiesya skhemy dlya odnoi posledovatelnosti bulevykh funktsii”, Diskretnyi analiz i issledovanie operatsii, 3:2 (1996), 62–79 | MR | Zbl

[6] Grinchuk M.I., “O monotonnoi slozhnosti porogovykh funktsii”, Sb. nauch. tr., Metody diskretnogo analiza v teorii grafov i slozhnosti, 52, no. 2, In-t matematiki SO RAN, Novosibirsk, 1992, 41–48 | MR | Zbl