Complete and incomplete systems of exponentials in spaces with a power weight on a half-line
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 52-55
Voir la notice de l'article provenant de la source Math-Net.Ru
We essentially widen the class of sequences $\lambda_n$ for which the completeness (non-completeness) of system of exponentials $e^{-\lambda_nt},~{\rm Re}\lambda_n>0$ is proved in the spaces $L^p(\mathbb{R}_+,t^\alpha dt),~\alpha>-1$. The proof uses the invariance of completeness relative to the change of the weight $t^\alpha$ by the weight $(1+t)^\alpha$; this fact is also proved here.
@article{VMUMM_2014_2_a7,
author = {A. M. Sedletskii},
title = {Complete and incomplete systems of exponentials in spaces with a power weight on a half-line},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {52--55},
publisher = {mathdoc},
number = {2},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a7/}
}
TY - JOUR AU - A. M. Sedletskii TI - Complete and incomplete systems of exponentials in spaces with a power weight on a half-line JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2014 SP - 52 EP - 55 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a7/ LA - ru ID - VMUMM_2014_2_a7 ER -
%0 Journal Article %A A. M. Sedletskii %T Complete and incomplete systems of exponentials in spaces with a power weight on a half-line %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2014 %P 52-55 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a7/ %G ru %F VMUMM_2014_2_a7
A. M. Sedletskii. Complete and incomplete systems of exponentials in spaces with a power weight on a half-line. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 52-55. http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a7/