Complete and incomplete systems of exponentials in spaces with a power weight on a half-line
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 52-55

Voir la notice de l'article provenant de la source Math-Net.Ru

We essentially widen the class of sequences $\lambda_n$ for which the completeness (non-completeness) of system of exponentials $e^{-\lambda_nt},~{\rm Re}\lambda_n>0$ is proved in the spaces $L^p(\mathbb{R}_+,t^\alpha dt),~\alpha>-1$. The proof uses the invariance of completeness relative to the change of the weight $t^\alpha$ by the weight $(1+t)^\alpha$; this fact is also proved here.
@article{VMUMM_2014_2_a7,
     author = {A. M. Sedletskii},
     title = {Complete and incomplete systems of exponentials in spaces with a power weight on a half-line},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {52--55},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a7/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Complete and incomplete systems of exponentials in spaces with a power weight on a half-line
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 52
EP  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a7/
LA  - ru
ID  - VMUMM_2014_2_a7
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Complete and incomplete systems of exponentials in spaces with a power weight on a half-line
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 52-55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a7/
%G ru
%F VMUMM_2014_2_a7
A. M. Sedletskii. Complete and incomplete systems of exponentials in spaces with a power weight on a half-line. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 52-55. http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a7/