Relative equilibria in the motion of a triangle and a point under mutual attraction
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 45-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The planar motion of a massive triangle and a point under the action of mutual Newtonian attraction is considered. The steady-state configurations are found and the sufficient conditions of their stability are studied. The applicability of barycentric coordinates are discussed for such problems.
@article{VMUMM_2014_2_a6,
     author = {V. I. Nikonov},
     title = {Relative equilibria in the motion of a triangle and a point under mutual attraction},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {45--51},
     year = {2014},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a6/}
}
TY  - JOUR
AU  - V. I. Nikonov
TI  - Relative equilibria in the motion of a triangle and a point under mutual attraction
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 45
EP  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a6/
LA  - ru
ID  - VMUMM_2014_2_a6
ER  - 
%0 Journal Article
%A V. I. Nikonov
%T Relative equilibria in the motion of a triangle and a point under mutual attraction
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 45-51
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a6/
%G ru
%F VMUMM_2014_2_a6
V. I. Nikonov. Relative equilibria in the motion of a triangle and a point under mutual attraction. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 45-51. http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a6/

[1] Karapetyan A.V., Sharakin S.A., “O statsionarnykh dvizheniyakh dvukh vzaimno gravitiruyuschikh tel i ikh ustoichivosti”, Vestn. Mosk. un-ta. Matem. Mekhan., 1992, no. 3, 42–48 | Zbl

[2] Munitsyna M.A., “O statsionarnykh dvizheniyakh dvukh vzaimno gravitiruyuschikh tel i ikh ustoichivosti”, Vestn. Mosk. un-ta. Matem. Mekhan., 2005, no. 6, 38–42 | MR | Zbl

[3] Burov A.A., Karapetyan A.V., “O dvizhenii krestoobraznykh tel”, Izv. RAN. Mekhan. tverdogo tela, 1995, no. 6, 14–18

[4] Karapetyan A.V., Sakhokia I.D., “O bifurkatsii i ustoichivosti statsionarnykh dvizhenii dvukh gravitiruyuschikh tel”, Prikl. matem. i mekhan., 56:6 (1992), 935–938 | MR | Zbl

[5] Budzko D.A., Prokopenya A.N., “Stability of equilibrium positions in the spatial circular restricted four-body problem”, Computer Algebra in Scientific Computing, Lect. Notes Comput. Sci., 7442, Springer-Verlag, Berlin–Heidelberg, 2012, 72–83 | DOI | MR | Zbl

[6] Balk M.B., Boltyanskii V.G., Geometriya mass, Nauka. Gl. red. fiz.-mat. lit., M., 1987 | MR

[7] Stepanov S.Ya., “Simmetrizatsiya kriteriev znakoopredelennosti simmetrichnykh kvadratichnykh form”, Prikl. matem. i mekhan., 66:6 (2002), 979–987 | MR | Zbl

[8] Burov A.A., “O dinamike tel, dopuskayuschikh simmetrii”, Zadachi issledovaniya ustoichivosti i stabilizatsii dvizheniya, Vychislitelnyi tsentr RAN, M., 1993, 3–12 | MR

[9] Buchin V., Burov A., Troger H., “A dumb-bell satellite with a cabin. Existence and stability of relative equilibria”, Electronic Proc. 6th EUROMECH Nonlinear Dynamics Conf., ENOC 2008, Inst. for Problems of Mechanical Engineering, St. Petersburg, 2008, 246

[10] Sulikashvili R.S., “Ob ustoichivosti statsionarnykh dvizhenii tel s sharovym tenzorom inertsii v nyutonovskom pole sil”, Prikl. matem. i mekhan., 51:5 (1987), 758–762 | Zbl