Rings of quotients for rings with big center
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 25-30
Cet article a éte moissonné depuis la source Math-Net.Ru
Ђ ring $R$ is called IIC-ring if any nonzero ideal of $R$ has nonzero intersection with the center of $R$. We consider certain results about rings of quotients of semiprime IIC-rings and show by examples that these properties are not conserved in the case of arbitrary IIC-rings. We prove more general properties of IIC-rings which concern its rings of quotients.
@article{VMUMM_2014_2_a3,
author = {D. V. Zlydnev},
title = {Rings of quotients for rings with big center},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {25--30},
year = {2014},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a3/}
}
D. V. Zlydnev. Rings of quotients for rings with big center. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 25-30. http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a3/
[1] Rowen L.H., “Some results on the center of a ring with polynomial identity”, Bull. Amer. Math. Soc., 79 (1973), 219–223 | DOI | MR | Zbl
[2] Armendariz E.P., Birkenmeier G.F., Park J.K., “Ideal intrinsic extensions with connections to PI-rings”, J. Pure and Appl. Algebra, 213 (2009), 1756–1776 | DOI | MR | Zbl
[3] Beidar K.I., Martindale W.S., Mikhalev A.V., Rings with generalized identities, Marcel Dekker, N.Y., 1996 | MR | Zbl