Rings of quotients for rings with big center
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 25-30

Voir la notice de l'article provenant de la source Math-Net.Ru

Ђ ring $R$ is called IIC-ring if any nonzero ideal of $R$ has nonzero intersection with the center of $R$. We consider certain results about rings of quotients of semiprime IIC-rings and show by examples that these properties are not conserved in the case of arbitrary IIC-rings. We prove more general properties of IIC-rings which concern its rings of quotients.
@article{VMUMM_2014_2_a3,
     author = {D. V. Zlydnev},
     title = {Rings of quotients for rings with big center},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {25--30},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a3/}
}
TY  - JOUR
AU  - D. V. Zlydnev
TI  - Rings of quotients for rings with big center
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 25
EP  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a3/
LA  - ru
ID  - VMUMM_2014_2_a3
ER  - 
%0 Journal Article
%A D. V. Zlydnev
%T Rings of quotients for rings with big center
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 25-30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a3/
%G ru
%F VMUMM_2014_2_a3
D. V. Zlydnev. Rings of quotients for rings with big center. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 25-30. http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a3/