Rings of quotients for rings with big center
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 25-30
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Ђ ring $R$ is called IIC-ring if any nonzero ideal of $R$ has nonzero intersection with the center of $R$. We consider certain results about rings of quotients of semiprime IIC-rings and show by examples that these properties are not conserved in the case of arbitrary IIC-rings. We prove more general properties of IIC-rings which concern its rings of quotients.
			
            
            
            
          
        
      @article{VMUMM_2014_2_a3,
     author = {D. V. Zlydnev},
     title = {Rings of quotients for rings with big center},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {25--30},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a3/}
}
                      
                      
                    D. V. Zlydnev. Rings of quotients for rings with big center. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 25-30. http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a3/
