Simulation of self-ignition of aviation kerosene by a shock wave
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 69-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The autoignition of the aviation kerosene surrogate by a shock wave has been investigated. Based on the corresponding kinetic mechanisms of the fuel surrogate combustion in air, the numerical simulation of the aviation kerosene ignition has been performed. The shock wave's parameters have been determined and the ignition time dependence on temperature has been obtained.
@article{VMUMM_2014_2_a12,
     author = {V. L. Kovalev and A. S. Vetchinkin and A. V. Vagner},
     title = {Simulation of self-ignition of aviation kerosene by a shock wave},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {69--71},
     year = {2014},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a12/}
}
TY  - JOUR
AU  - V. L. Kovalev
AU  - A. S. Vetchinkin
AU  - A. V. Vagner
TI  - Simulation of self-ignition of aviation kerosene by a shock wave
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 69
EP  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a12/
LA  - ru
ID  - VMUMM_2014_2_a12
ER  - 
%0 Journal Article
%A V. L. Kovalev
%A A. S. Vetchinkin
%A A. V. Vagner
%T Simulation of self-ignition of aviation kerosene by a shock wave
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 69-71
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a12/
%G ru
%F VMUMM_2014_2_a12
V. L. Kovalev; A. S. Vetchinkin; A. V. Vagner. Simulation of self-ignition of aviation kerosene by a shock wave. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 69-71. http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a12/

[1] Gueret C., Cathonnet M., Boettner J.-C., Gaillard F., “Experimental study and modeling of kerosene oxidation in a jet-stirred flow reactor”, Proc. Combust. Inst., 23 (1990), 211–216 | DOI

[2] Moriue O., Eigenbrod C., Rath H.J., Sato J., Okai K., Tsue M., Kono M., “Effects of dilution by aromatic hydrocarbons on staged ignition behavior of n-decane droplets”, Proc. Combust. Inst., 28 (2000), 969–975 | DOI

[3] Wendt C., Eigenbrod C., Moriue O., Rath H.J., “A model for devolatilization and ignition of an axisymmetric coal particle”, Proc. Combust. Inst., 29 (2002), 449–457 | DOI

[4] Dean A.J., Penyazkov O.G., Sevruk K.L., Varatharajan B., “Autoignition of surrogate fuels at elevated temperatures and pressures”, Proc. Combust. Inst., 31 (2007), 2481–2488 | DOI

[5] Curran H.J., Gaffuri P., Pitz W.J., Westbrook C.K., “A comprehensive modeling study of n-heptane oxidation”, Combust. and Flame, 114 (1998), 149–177 | DOI

[6] Bikas G., Peters N., “Kinetic modeling of n-decane combustion and autoignition: modeling combustion of n-decane”, Combust. and Flame, 126 (2001), 1456–1475 | DOI

[7] Spadaccini L.J., TeVelde J.A., “Autoignition characteristics of aircraft-type fuels”, Combust. and Flame, 46 (1982), 283–300 | DOI