Representation of monomials as a sum of powers of linear forms
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 9-14
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the product of $n$ complex variables can be represented as a sum of $m=2^{n-1}$ $n$-powers of linear forms of $n$ variables and for any $m 2^{n-1}$ there is no such identity with $m$ summands being $n$th powers of linear forms.
@article{VMUMM_2014_2_a1,
author = {S. B. Gashkov and E. T. Shavgulidze},
title = {Representation of monomials as a sum of powers of linear forms},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {9--14},
publisher = {mathdoc},
number = {2},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a1/}
}
TY - JOUR AU - S. B. Gashkov AU - E. T. Shavgulidze TI - Representation of monomials as a sum of powers of linear forms JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2014 SP - 9 EP - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a1/ LA - ru ID - VMUMM_2014_2_a1 ER -
S. B. Gashkov; E. T. Shavgulidze. Representation of monomials as a sum of powers of linear forms. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 9-14. http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a1/