Representation of monomials as a sum of powers of linear forms
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 9-14

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the product of $n$ complex variables can be represented as a sum of $m=2^{n-1}$ $n$-powers of linear forms of $n$ variables and for any $m 2^{n-1}$ there is no such identity with $m$ summands being $n$th powers of linear forms.
@article{VMUMM_2014_2_a1,
     author = {S. B. Gashkov and E. T. Shavgulidze},
     title = {Representation of monomials as a sum of powers of linear forms},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {9--14},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a1/}
}
TY  - JOUR
AU  - S. B. Gashkov
AU  - E. T. Shavgulidze
TI  - Representation of monomials as a sum of powers of linear forms
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 9
EP  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a1/
LA  - ru
ID  - VMUMM_2014_2_a1
ER  - 
%0 Journal Article
%A S. B. Gashkov
%A E. T. Shavgulidze
%T Representation of monomials as a sum of powers of linear forms
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 9-14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a1/
%G ru
%F VMUMM_2014_2_a1
S. B. Gashkov; E. T. Shavgulidze. Representation of monomials as a sum of powers of linear forms. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 9-14. http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a1/