Representation of monomials as a sum of powers of linear forms
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 9-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that the product of $n$ complex variables can be represented as a sum of $m=2^{n-1}$ $n$-powers of linear forms of $n$ variables and for any $m< 2^{n-1}$ there is no such identity with $m$ summands being $n$th powers of linear forms.
@article{VMUMM_2014_2_a1,
     author = {S. B. Gashkov and E. T. Shavgulidze},
     title = {Representation of monomials as a sum of powers of linear forms},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {9--14},
     year = {2014},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a1/}
}
TY  - JOUR
AU  - S. B. Gashkov
AU  - E. T. Shavgulidze
TI  - Representation of monomials as a sum of powers of linear forms
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 9
EP  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a1/
LA  - ru
ID  - VMUMM_2014_2_a1
ER  - 
%0 Journal Article
%A S. B. Gashkov
%A E. T. Shavgulidze
%T Representation of monomials as a sum of powers of linear forms
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 9-14
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a1/
%G ru
%F VMUMM_2014_2_a1
S. B. Gashkov; E. T. Shavgulidze. Representation of monomials as a sum of powers of linear forms. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 9-14. http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a1/

[1] Gashkov S.B., “Ob odnom metode polucheniya nizhnikh otsenok slozhnosti monotonnykh vychislenii mnogochlenov”, Vestn. Mosk. un-ta. Matem. Mekhan., 1987, no. 5, 7–13

[2] Gashkov S.B., “O slozhnosti vychisleniya nekotorykh klassov mnogochlenov neskolkikh peremennykh”, Vestn. Mosk. un-ta. Matem. Mekhan., 1988, no. 1, 89–91

[3] Gashkov S.B., “O parallelnom vychislenii nekotorykh klassov mnogochlenov s rastuschim chislom peremennykh”, Vestn. Mosk. un-ta. Matem. Mekhan., 1990, no. 2, 88–92 | Zbl

[4] Yablonskii S.V., “Realizatsiya lineinoi funktsii v klasse P-skhem”, Dokl. AN SSSR, 94:5 (1954), 805–806

[5] Khrapchenko V.M., “O slozhnosti realizatsii lineinoi funktsii v klasse P-skhem”, Matem. zametki, 10:1 (1971), 83–92 | MR | Zbl

[6] Chen X., Kayal N., Wigderson A., “Partial derivatives in arithmetic complexity”, Foundations and Trends in Theoretical Computer Science, 6:1 (2010), 2 | MR

[7] Kayal N., “An exponential lower bound for the sum of powers of bounded degree polynomials”, Electronic Colloquium on Computational Complexity (2012), Report 81

[8] Fisher I., “Sums of like powers of multivariant linear forms”, Math. Mag., 67:1 (1994), 59–61 | DOI | MR

[9] Sonnenschein H., “A representation for polynomials in several variables”, Amer. Math. Monthly, 78:1 (1971), 45–47 | DOI | MR | Zbl

[10] Prasolov V.V., Mnogochleny, MTsNMO, M., 2000

[11] Studencheskie olimpiady po algebre na mekhmate MGU 2006–2011, MTsNMO, M., 2012