General categorical framework for topologically free normed modules
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 3-9

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the strict projectivity of normed modules is a special case of projectivity in a rigged category. A criterion is given for a bornological space to be a base for a free object in the corresponding category. A certain class of categories is indicated where each projective object is a retract of a free object.
@article{VMUMM_2014_2_a0,
     author = {E. A. Gusarov},
     title = {General categorical framework for topologically free normed modules},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--9},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a0/}
}
TY  - JOUR
AU  - E. A. Gusarov
TI  - General categorical framework for topologically free normed modules
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 3
EP  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a0/
LA  - ru
ID  - VMUMM_2014_2_a0
ER  - 
%0 Journal Article
%A E. A. Gusarov
%T General categorical framework for topologically free normed modules
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 3-9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a0/
%G ru
%F VMUMM_2014_2_a0
E. A. Gusarov. General categorical framework for topologically free normed modules. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 3-9. http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a0/