General categorical framework for topologically free normed modules
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 3-9
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that the strict projectivity of normed modules is a special case of projectivity in a rigged category. A criterion is given for a bornological space to be a base for a free object in the corresponding category. A certain class of categories is indicated where each projective object is a retract of a free object.
@article{VMUMM_2014_2_a0,
author = {E. A. Gusarov},
title = {General categorical framework for topologically free normed modules},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--9},
year = {2014},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a0/}
}
E. A. Gusarov. General categorical framework for topologically free normed modules. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 3-9. http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a0/
[1] Khelemskii A.Ya., “Metricheskaya svoboda i proektivnost dlya klassicheskikh i kvantovykh normirovannykh modulei”, Matem. sb., 204:7 (2013), 127–158 | DOI | MR
[2] Hogbe-Nlend H., Bornologies and functional analysis, North-Holland Mathematics Studies, 26, North-Holland, 1977 | MR | Zbl
[3] Maklein S., Kategorii dlya rabotayuschego matematika, Fizmatlit, M., 2004
[4] Khelemskii A.Ya., Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo MGU, M., 1986 | MR