General categorical framework for topologically free normed modules
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 3-9
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the strict projectivity of normed modules is a special case of projectivity in a rigged category. A criterion is given for a bornological space to be a base for a free object in the corresponding category. A certain class of categories is indicated where each projective object is a retract of a free object.
@article{VMUMM_2014_2_a0,
author = {E. A. Gusarov},
title = {General categorical framework for topologically free normed modules},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--9},
publisher = {mathdoc},
number = {2},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a0/}
}
E. A. Gusarov. General categorical framework for topologically free normed modules. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 3-9. http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a0/