General categorical framework for topologically free normed modules
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 3-9 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the strict projectivity of normed modules is a special case of projectivity in a rigged category. A criterion is given for a bornological space to be a base for a free object in the corresponding category. A certain class of categories is indicated where each projective object is a retract of a free object.
@article{VMUMM_2014_2_a0,
     author = {E. A. Gusarov},
     title = {General categorical framework for topologically free normed modules},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--9},
     year = {2014},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a0/}
}
TY  - JOUR
AU  - E. A. Gusarov
TI  - General categorical framework for topologically free normed modules
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 3
EP  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a0/
LA  - ru
ID  - VMUMM_2014_2_a0
ER  - 
%0 Journal Article
%A E. A. Gusarov
%T General categorical framework for topologically free normed modules
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 3-9
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a0/
%G ru
%F VMUMM_2014_2_a0
E. A. Gusarov. General categorical framework for topologically free normed modules. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2014), pp. 3-9. http://geodesic.mathdoc.fr/item/VMUMM_2014_2_a0/

[1] Khelemskii A.Ya., “Metricheskaya svoboda i proektivnost dlya klassicheskikh i kvantovykh normirovannykh modulei”, Matem. sb., 204:7 (2013), 127–158 | DOI | MR

[2] Hogbe-Nlend H., Bornologies and functional analysis, North-Holland Mathematics Studies, 26, North-Holland, 1977 | MR | Zbl

[3] Maklein S., Kategorii dlya rabotayuschego matematika, Fizmatlit, M., 2004

[4] Khelemskii A.Ya., Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo MGU, M., 1986 | MR