Multichannel queueing system in a random environment
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 53-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is focused on the multichannel queueing system with heterogeneous servers and regenerative input flow operating in a random environment. The environment can destroy the whole system and the system is reconstructed after that. The necessary and sufficient ergodicity condition of the system is obtained.
@article{VMUMM_2014_1_a8,
     author = {A. V. Tkachenko},
     title = {Multichannel queueing system in a random environment},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {53--57},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a8/}
}
TY  - JOUR
AU  - A. V. Tkachenko
TI  - Multichannel queueing system in a random environment
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 53
EP  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a8/
LA  - ru
ID  - VMUMM_2014_1_a8
ER  - 
%0 Journal Article
%A A. V. Tkachenko
%T Multichannel queueing system in a random environment
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 53-57
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a8/
%G ru
%F VMUMM_2014_1_a8
A. V. Tkachenko. Multichannel queueing system in a random environment. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 53-57. http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a8/

[1] Afanaseva L.G., Belorusov T.N., “Predelnye teoremy dlya sistem s neterpelivymi klientami v usloviyakh vysokoi zagruzki”, Teor. veroyatn. i ee primen., 56:4 (2011), 788–796 | DOI

[2] Afanaseva L.G., Tkachenko A.V., “Mnogokanalnye sistemy obsluzhivaniya s regeneriruyuschim vkhodyaschim potokom”, Teor. veroyatn. i ee primen., 58:2 (2013), 210–234 | DOI | MR

[3] Borovkov A.A., “Nekotorye predelnye teoremy teorii massovogo obsluzhivaniya. II (mnogokanalnye sistemy)”, Teor. veroyatn. i ee primen., 10:3 (1965), 409–436 | MR

[4] Foss S.G., “Ob usloviyakh ergodichnosti v mnogokanalnykh sistemakh massovogo obsluzhivaniya s ozhidaniem”, Sib. matem. zhurn., 24:6 (1983), 168–175 | MR | Zbl

[5] Pechinkin A.V., Sokolov I.A., Chaplygin V.V., “Mnogolineinaya sistema massovogo obsluzhivaniya s gruppovym otkazom priborov”, Inform. primen., 3:3 (2009), 4–15 | MR

[6] Foss S., Korshunov D., “Heavy tails in multi-server queue”, Queueing Syst., 52:1 (2006), 31–48 | DOI | MR | Zbl

[7] Halachimi B., Franta W.R., “A diffusion approximate solution to the G/G/K queueing system”, Comp. Oper. Res., 4:1 (1977), 37–46 | DOI

[8] Iglehart D.L., Whitt W., “Multiple channel queues in heavy traffic. I”, Adv. Appl. Prob., 2:1 (1970), 150–177 | DOI | MR | Zbl

[9] Kendall D.G., “Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded Markov chain”, Ann. Math. Stat., 1953, 338–354 | DOI | MR | Zbl

[10] Kiefer J., Wolfowitz J., “On the theory of queues with many servers”, Trans. Amer. Math. Soc., 78:1 (1955), 1–15 | DOI | MR

[11] Kollerstrom J., “Heavy traffic theory for queues with several servers. I”, J. Appl. Prob., 11:3 (1974), 544–560 | DOI | MR

[12] Loynes R.M., “The stability of a queue with non-independent inter-arrival and service times”, Math. Proc. Cambridge Phil. Soc., 58:3 (1962), 497–520 | DOI | MR | Zbl

[13] Morozov E., “The stability of a non-homogeneous queueing system with regenerative input”, J. Math. Sci., 83:3 (1997), 407–421 | DOI | MR | Zbl

[14] Sadowsky J.S., Szpankowski W., “The probability of large queue lengths and waiting times in a heterogeneous multiserver queue I: tight limits”, Adv. Appl. Prob., 27:2 (1995), 532–550 | DOI | MR

[15] Krishnamoorthy A., Pramod P.K., Chakravarthy S.R., “Queues with interruptions: a survey”, TOP, 2012, 1–31 | MR