Primary differential nil-algebras do exist
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 50-53
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a monomorphism from differential algebra $k\{x\} / [x^m]$ to Grassmann algebra endowed with the structure of differential algebra. Using this monomorphism, we prove the primality of the $k\{x\} / [x^m]$ and its algebra of differential polynomials, solve the so-called Ritt problem and give a new proof of integrality of the ideal $[x^m]$.
@article{VMUMM_2014_1_a7,
author = {G. A. Pogudin},
title = {Primary differential nil-algebras do exist},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {50--53},
publisher = {mathdoc},
number = {1},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a7/}
}
G. A. Pogudin. Primary differential nil-algebras do exist. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 50-53. http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a7/