@article{VMUMM_2014_1_a7,
author = {G. A. Pogudin},
title = {Primary differential nil-algebras do exist},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {50--53},
year = {2014},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a7/}
}
G. A. Pogudin. Primary differential nil-algebras do exist. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 50-53. http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a7/
[1] Levi H., “On the structure of differential polynomials and their theory of ideals”, Trans. Amer. Math. Soc., 51 (1942), 532–568 | DOI | MR | Zbl
[2] Ritt J.F., Differential algebra, Colloquium Publ., XXXIII, Amer. Math. Soc., N.Y., 1950 | DOI | MR | Zbl
[3] O'Keefe K.B., “A property of the differential ideal $[y^p]$”, Trans. Amer. Math. Soc., 94 (1960), 483–497 | MR | Zbl
[4] Zobnin A.I., Dopustimye uporyadocheniya i standartnye bazisy differentsialnykh idealov, Kand. dis., M., 2007
[5] Zobnin A.I., “Differentsialnye standartnye bazisy pri obratnykh leksikograficheskikh uporyadocheniyakh”, Fund. i prikl. matem., 14:4 (2008), 121–135
[6] Andrunakievich V.A., Ryabukhin Yu.M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979 | MR
[7] Ferrero M., Kishimoto K., Motose K., “On radicals of skew polynomial rings of derivation type”, J. London Math. Soc., 28 (1983), 8–17 | DOI | MR