Primary differential nil-algebras do exist
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 50-53

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a monomorphism from differential algebra $k\{x\} / [x^m]$ to Grassmann algebra endowed with the structure of differential algebra. Using this monomorphism, we prove the primality of the $k\{x\} / [x^m]$ and its algebra of differential polynomials, solve the so-called Ritt problem and give a new proof of integrality of the ideal $[x^m]$.
@article{VMUMM_2014_1_a7,
     author = {G. A. Pogudin},
     title = {Primary differential nil-algebras do exist},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {50--53},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a7/}
}
TY  - JOUR
AU  - G. A. Pogudin
TI  - Primary differential nil-algebras do exist
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 50
EP  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a7/
LA  - ru
ID  - VMUMM_2014_1_a7
ER  - 
%0 Journal Article
%A G. A. Pogudin
%T Primary differential nil-algebras do exist
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 50-53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a7/
%G ru
%F VMUMM_2014_1_a7
G. A. Pogudin. Primary differential nil-algebras do exist. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 50-53. http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a7/