Primary differential nil-algebras do exist
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 50-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a monomorphism from differential algebra $k\{x\} / [x^m]$ to Grassmann algebra endowed with the structure of differential algebra. Using this monomorphism, we prove the primality of the $k\{x\} / [x^m]$ and its algebra of differential polynomials, solve the so-called Ritt problem and give a new proof of integrality of the ideal $[x^m]$.
@article{VMUMM_2014_1_a7,
     author = {G. A. Pogudin},
     title = {Primary differential nil-algebras do exist},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {50--53},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a7/}
}
TY  - JOUR
AU  - G. A. Pogudin
TI  - Primary differential nil-algebras do exist
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 50
EP  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a7/
LA  - ru
ID  - VMUMM_2014_1_a7
ER  - 
%0 Journal Article
%A G. A. Pogudin
%T Primary differential nil-algebras do exist
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 50-53
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a7/
%G ru
%F VMUMM_2014_1_a7
G. A. Pogudin. Primary differential nil-algebras do exist. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 50-53. http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a7/

[1] Levi H., “On the structure of differential polynomials and their theory of ideals”, Trans. Amer. Math. Soc., 51 (1942), 532–568 | DOI | MR | Zbl

[2] Ritt J.F., Differential algebra, Colloquium Publ., XXXIII, Amer. Math. Soc., N.Y., 1950 | DOI | MR | Zbl

[3] O'Keefe K.B., “A property of the differential ideal $[y^p]$”, Trans. Amer. Math. Soc., 94 (1960), 483–497 | MR | Zbl

[4] Zobnin A.I., Dopustimye uporyadocheniya i standartnye bazisy differentsialnykh idealov, Kand. dis., M., 2007

[5] Zobnin A.I., “Differentsialnye standartnye bazisy pri obratnykh leksikograficheskikh uporyadocheniyakh”, Fund. i prikl. matem., 14:4 (2008), 121–135

[6] Andrunakievich V.A., Ryabukhin Yu.M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979 | MR

[7] Ferrero M., Kishimoto K., Motose K., “On radicals of skew polynomial rings of derivation type”, J. London Math. Soc., 28 (1983), 8–17 | DOI | MR