Residual empirical processes and qualitatively robust GM-tests in autoregression
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 46-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article deals with the local qualitative robustness of GM-tests against outliers in the autoregression model. We consider a local scheme of data contamination by independent outliers with the intensity $O(n^{-1/2}).$ The qualitative robustness in terms of power equicontinuity is obtained. The asymptotically optimal in maximin sense GM-tests are constructed.
@article{VMUMM_2014_1_a6,
     author = {M. V. Boldin and D. M. Esaulov},
     title = {Residual empirical processes and qualitatively robust {GM-tests} in autoregression},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {46--50},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a6/}
}
TY  - JOUR
AU  - M. V. Boldin
AU  - D. M. Esaulov
TI  - Residual empirical processes and qualitatively robust GM-tests in autoregression
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 46
EP  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a6/
LA  - ru
ID  - VMUMM_2014_1_a6
ER  - 
%0 Journal Article
%A M. V. Boldin
%A D. M. Esaulov
%T Residual empirical processes and qualitatively robust GM-tests in autoregression
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 46-50
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a6/
%G ru
%F VMUMM_2014_1_a6
M. V. Boldin; D. M. Esaulov. Residual empirical processes and qualitatively robust GM-tests in autoregression. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 46-50. http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a6/

[1] Hampel F.R., Ronchetti E.M., Rousseeuw J., Stahel W.A., Robust statistics. The approach based on influence functions, Wiley, N.Y., 1985 | MR

[2] Koul H.L., Weighted empiricals and linear models, IMS Lect. Notes. Monogr. Series, 21, Hayward, CA, 1992 | MR | Zbl

[3] Esaulov D.M., “Robastnost GM-testov v avtoregressii protiv vybrosov”, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 2, 47–50 | MR

[4] Martin R.D., Yohai V.J., “Influence functionals for time series”, Ann. Statist., 14 (1986), 781–818 | DOI | MR | Zbl

[5] Boldin M.V., “On empirical processes in heteroscedastic time series and their use for hypothesis testing and estimation”, Math. Methods Statist., 9 (2000), 65–89 | MR | Zbl

[6] Boldin M.V., “Local robustness of sign tests in AR(1) against outliers”, Math. Methods Statist., 20 (2011), 1–13 | DOI | MR | Zbl

[7] Reider H., “Qualitative robustness of rank tests”, Ann. Statist., 10 (1982), 205–211 | DOI | MR

[8] Boldin M.V., “On median estimates and tests in autoregressive models”, Math. Methods Statist., 3 (1994), 114–129 | MR | Zbl