Robust stability of third-order control systems
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 39-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Application of variational methods in stability theory leads to new results in the case of control systems whose description includes various parameters known up to some sets. This paper attempts to consider these possibilities by the example of expansion of the classical concept of stability under constantly acting perturbations introduced by G. N. Duboshin and I. G. Malkin in 1941–1944.
@article{VMUMM_2014_1_a5,
     author = {V. V. Aleksandrov and I. O. Zueva and G. Yu. Sidorenko},
     title = {Robust stability of third-order control systems},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {39--45},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a5/}
}
TY  - JOUR
AU  - V. V. Aleksandrov
AU  - I. O. Zueva
AU  - G. Yu. Sidorenko
TI  - Robust stability of third-order control systems
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 39
EP  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a5/
LA  - ru
ID  - VMUMM_2014_1_a5
ER  - 
%0 Journal Article
%A V. V. Aleksandrov
%A I. O. Zueva
%A G. Yu. Sidorenko
%T Robust stability of third-order control systems
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 39-45
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a5/
%G ru
%F VMUMM_2014_1_a5
V. V. Aleksandrov; I. O. Zueva; G. Yu. Sidorenko. Robust stability of third-order control systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 39-45. http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a5/

[1] Duboshin G.N., “K voprosu ob ustoichivosti dvizheniya otnositelno postoyanno deistvuyuschikh vozmuschenii”, Tr. GAISh, 14:1 (1940), 153–164

[2] Lure A.I., Postnikov V.N., “K teorii ustoichivosti reguliruemykh sistem”, Prikl. matem. i mekhan., 8:3 (1944), 246–248 | Zbl

[3] Liberzon M.R., “Ocherki teorii absolyutnoi ustoichivosti”, Avtomat. i telemekhan., 2006, no. 10, 86–119 | Zbl

[4] Aleksandrov V.V., Sidorenko G.Yu., Temoltzi-Auila P., “Robastnaya ustoichivost upravlyaemykh sistem”, Tr. X Mezhdunar. Chetaevskoi konferentsii “Analiticheskaya mekhanika, ustoichivost i upravlenie”, v. 2, Kazan, 2012, 45–52

[5] Malkin I.G., Teoriya ustoichivosti dvizheniya, Nauka, M., 1966 | MR

[6] Aleksandrov V.V., Boltyanskii V.G., Lemak S.S., Parusnikov N.A., Tikhomirov V.M., Optimizatsiya dinamiki upravlyaemykh sistem, Izd-vo MGU, M., 2000

[7] Aleksandrov V.V., Zhermolenko V.N., “Kriterii absolyutnoi ustoichivosti sistem tretego poryadka”, Dokl. AN SSSR, 222:2 (1975), 309–311 | MR | Zbl

[8] Aleksandrov V.V., Zhermolenko V.N., “Absolyutnaya ustoichivost parametricheski vozmuschaemykh sistem tretego poryadka”, Avtomat. i telemekhan., 2009, no. 8, 20–40

[9] Zhermolenko V.N., “K zadache B.V. Bulgakova o maksimalnom otklonenii kolebatelnoi sistemy vtorogo poryadka”, Vestn. Mosk. un-ta. Matem. Mekhan., 1980, no. 2, 87–91 | Zbl

[10] Aleksandrov V.V., Reies-Romero M., Sidorenko G.Yu., Temoltzi-Auila R., “Ustoichivost upravlyaemogo perevernutogo mayatnika pri postoyanno deistvuyuschikh gorizontalnykh vozmuscheniyakh tochki opory”, Izv. RAN. Mekhan. tverdogo tela, 2010, no. 2, 41–48

[11] Novozhilov I.V., Fraktsionnyi analiz, Izd-vo TsPI pri mekh.-mat. f-te MGU, M., 2000 | MR

[12] Vasileva A.B., Butuzov V.F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR

[13] Polyak B.T., Scherbakov P.S., Robastnaya ustoichivost i upravlenie, Nauka, M., 2002