Robust stability of third-order control systems
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 39-45
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Application of variational methods in stability theory leads to new results in the case of control systems whose description includes various parameters known up to some sets. This paper attempts to consider these possibilities by the example of expansion of the classical concept of stability under constantly acting perturbations introduced by G. N. Duboshin and I. G. Malkin in 1941–1944.
			
            
            
            
          
        
      @article{VMUMM_2014_1_a5,
     author = {V. V. Aleksandrov and I. O. Zueva and G. Yu. Sidorenko},
     title = {Robust stability of third-order control systems},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {39--45},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a5/}
}
                      
                      
                    TY - JOUR AU - V. V. Aleksandrov AU - I. O. Zueva AU - G. Yu. Sidorenko TI - Robust stability of third-order control systems JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2014 SP - 39 EP - 45 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a5/ LA - ru ID - VMUMM_2014_1_a5 ER -
V. V. Aleksandrov; I. O. Zueva; G. Yu. Sidorenko. Robust stability of third-order control systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 39-45. http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a5/
