Solution of polynomial equations in the field of algebraic numbers
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 25-29
Cet article a éte moissonné depuis la source Math-Net.Ru
A method of solving polynomial equations in a ring $\mathfrak D [x]$ is described, where $\mathfrak D$ is an arbitrary order of field $\mathbb Q (\omega)$ and $\omega$ is an algebraic integer.
@article{VMUMM_2014_1_a3,
author = {M. E. Zelenova},
title = {Solution of polynomial equations in the field of algebraic numbers},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {25--29},
year = {2014},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a3/}
}
M. E. Zelenova. Solution of polynomial equations in the field of algebraic numbers. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 25-29. http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a3/
[1] Buhler J.P. , Lenstra H.W., Pomerance C., “Factoring integers with the number field sieve”, The development of the number field sieve, Lect. Notes Math., 1554, Springer, Berlin, 1993, 50–94 | DOI | MR | Zbl
[2] German O.N., Nesterenko Yu.V., Teoretiko-chislovye metody v kriptografii, Akademiya, M., 2012
[3] Borevich Z.I., Shafarevich I.R., Teoriya chisel, Nauka, M., 1972 | MR
[4] Varden B.L. van der, Algebra, Nauka, M., 1976 | MR
[5] Kurosh A.G., Kurs vysshei algebry, Nauka, M., 1965 | MR
[6] Zarisskii O., Samyuel P., Kommutativnaya algebra, v. 1, IL, M., 1963