Estimates of Steiner subratio and Steiner–Gromov ratio
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 17-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A lower bound for $n$-pointed Steiner subratio and Steiner–Gromov ratio was obtained. As a corollary of the main theorem, the value of these ratios was calculated for several metric spaces, for example, for philogenetic ones. It was also proved, that any number from 0,5 to 1 could be a Steiner subratio or a Steiner–Gromov ratio of a certain metric space.
@article{VMUMM_2014_1_a2,
     author = {A. C. Pahkomova},
     title = {Estimates of {Steiner} subratio and {Steiner{\textendash}Gromov} ratio},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {17--25},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a2/}
}
TY  - JOUR
AU  - A. C. Pahkomova
TI  - Estimates of Steiner subratio and Steiner–Gromov ratio
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2014
SP  - 17
EP  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a2/
LA  - ru
ID  - VMUMM_2014_1_a2
ER  - 
%0 Journal Article
%A A. C. Pahkomova
%T Estimates of Steiner subratio and Steiner–Gromov ratio
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2014
%P 17-25
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a2/
%G ru
%F VMUMM_2014_1_a2
A. C. Pahkomova. Estimates of Steiner subratio and Steiner–Gromov ratio. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 17-25. http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a2/

[1] Gauss C.F., “Briefwechsel Gauss–Schuhmacher”, Werke, No 1, v. X, Göttingem, 1917, 459–468 | MR

[2] Jarnik V., Kossler V., “O minimalnich grafeth obeahujicich n danich bodu”, Cas. Pet. Mat. a Fys., 63 (1934), 223–235

[3] Gromov M., “Filling Riemannian manifolds”, J. Diff. Geom., 18 (1983), 1–147 | DOI | MR | Zbl

[4] Ivanov A.O., Tuzhilin A.A., “Odnomernaya problema Gromova o minimalnom zapolnenii”, Matem. sb., 203:5 (2012), 65–118 | DOI | MR | Zbl

[5] Garkavi A.L., Shmatkov V.A., “O tochke Lame i ee obobscheniyakh v normirovannom prostranstve”, Matem. sb., 95(137):2(10) (1974), 272–293 | MR | Zbl

[6] Vesely L., “A characterization of reflexivity in the terms of the existence of generalized centers”, Extracta Mathematicae, 8:2–3 (1993), 125–131 | MR | Zbl

[7] Baronti M., Casini E., Papini P.L., “Equilateral sets and their central points”, Rend. Mat. Appl., 13:1 (1993), 133–148 | MR | Zbl

[8] Papini P.L., “Two new examples of sets without medians and centers”, Sociedad de Estadística e Investigacíon Operativa Top., 13:2 (2005), 315–320 | MR | Zbl

[9] Borodin P.A., “Primer nesuschestvovaniya tochki Shteinera v banakhovom prostranstve”, Matem. zametki, 87:4 (2010), 514–518 | DOI | Zbl

[10] Eremin A.Yu., “Formula vesa minimalnogo zapolneniya konechnogo metricheskogo prostranstva”, Matem. sb., 204:9 (2013), 51–72 | DOI | MR | Zbl

[11] Ivanov A.O., Tuzhilin A.A., Teoriya ekstremalnykh setei, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003 | MR

[12] Cieslik D., The Steiner Ratio, Kluwer Academic Publishers, Boston–London–Dordrecht, 2001 | MR | Zbl