Estimates of Steiner subratio and Steiner--Gromov ratio
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 17-25
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A lower bound for $n$-pointed Steiner subratio and Steiner–Gromov ratio was obtained. As a corollary of the main theorem, the value of these ratios was calculated for several metric spaces, for example, for philogenetic ones. It was also proved, that any number from 0,5 to 1 could be a Steiner subratio or a Steiner–Gromov ratio of a certain metric space.
			
            
            
            
          
        
      @article{VMUMM_2014_1_a2,
     author = {A. C. Pahkomova},
     title = {Estimates of {Steiner} subratio and {Steiner--Gromov} ratio},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {17--25},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a2/}
}
                      
                      
                    A. C. Pahkomova. Estimates of Steiner subratio and Steiner--Gromov ratio. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 17-25. http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a2/
