@article{VMUMM_2014_1_a0,
author = {I. V. Rodionov},
title = {Properties of {Hill's} estimator of extreme value index for impure samples},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--6},
year = {2014},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a0/}
}
I. V. Rodionov. Properties of Hill's estimator of extreme value index for impure samples. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2014), pp. 3-6. http://geodesic.mathdoc.fr/item/VMUMM_2014_1_a0/
[1] Fereira A., Haan L. de, Extreme value theory. An introduction, Springer Series in Operations Research and Financial Engineering, Springer, N.Y., 2006 | MR
[2] Hill B.M., “A simple general approach to inference about the tail of a distribution”, Ann. Statist., 3 (1975), 1163–1174 | DOI | MR | Zbl
[3] Fisher R.A., Tippet L.H.C., “Limiting forms of the frequency distribution of the largest or smallest member of a sample”, Proc. Cambridge Phil. Soc., 24 (1928), 180–190 | DOI | Zbl
[4] Leadbetter M.R., Lingren G., Rootzén H., Extreme and related properties of random sequences and processes, Springer Statistics Series, Springer, Berlin–Heidelberg–N.Y., 1983 | DOI | MR
[5] Kuznetsov D.S., “Predelnye teoremy dlya maksimuma sluchainykh velichin”, Vestn. Mosk. un-ta. Matem. Mekhan., 2005, no. 3, 6–9
[6] Olshanskii K.A., “Ob ekstremalnom indekse prorezhennogo protsessa avtoregressii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2004, no. 3, 17–23
[7] Kudrov A.V., Piterbarg V.I., “On maxima of partial samples in Gaussian sequences with pseudo-stationary trends”, Liet. matem. rink., 47:1 (2007), 1–10 | MR
[8] Rodionov I.V., “Puassonovskaya predelnaya teorema dlya vysokikh ekstremumov vremennogo ryada s sezonnoi sostavlyayuschei i strogo monotonnym trendom”, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 1, 12–17 | Zbl
[9] Billingsley P., Convergence of probability measures, Wiley, N.Y., 1968 | MR | Zbl