Homogeneous almost primitive elements of free non-associative (anti-) commutative algebras
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2013), pp. 50-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Criteria for homogeneous elements to be almost primitive are obtained in the paper for free nonassociative commutative and anticommutative algebras of any rank.
@article{VMUMM_2013_6_a9,
     author = {A. V. Klimakov},
     title = {Homogeneous almost primitive elements of free non-associative (anti-) commutative algebras},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {50--53},
     year = {2013},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a9/}
}
TY  - JOUR
AU  - A. V. Klimakov
TI  - Homogeneous almost primitive elements of free non-associative (anti-) commutative algebras
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 50
EP  - 53
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a9/
LA  - ru
ID  - VMUMM_2013_6_a9
ER  - 
%0 Journal Article
%A A. V. Klimakov
%T Homogeneous almost primitive elements of free non-associative (anti-) commutative algebras
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 50-53
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a9/
%G ru
%F VMUMM_2013_6_a9
A. V. Klimakov. Homogeneous almost primitive elements of free non-associative (anti-) commutative algebras. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2013), pp. 50-53. http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a9/

[1] Kurosh A.G., “Neassotsiativnye svobodnye algebry i svobodnye proizvedeniya algebr”, Matem. sb., 20 (1947), 239–262 | MR

[2] Shirshov A.I., “Podalgebry svobodnykh kommutativnykh i antikommutativnykh algebr”, Matem. sb., 34 (1954), 81–88

[3] Klimakov A.V., “Pochti primitivnye elementy svobodnykh neassotsiativnykh (anti)kommutativnykh algebr malykh rangov”, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 5, 19–24 | MR

[4] Mikhalev A.A., Shpilrain V., Yu J.-T., Combinatorial Methods. Free Groups, Polynomials, and Free algebras, Springer, N.Y., 2004 | MR

[5] Mikhalev A.A., Umirbaev U.U., Yu J.-T., “Automorphic orbits of elements of free non-associative algebras”, J. Algebra, 243 (2001), 198–223 | DOI | MR

[6] Mikhalev A.A., Mikhalev A.V., Chepovskii A.A., Shampaner K., “Primitivnye elementy svobodnykh neassotsiativnykh algebr”, Fund. i prikl. matem., 13:5 (2007), 171–192

[7] Mikhalev A.A., Yu J.-T., “Primitive, almost primitive, test, and $\Delta$-primitive elements of free algebras with the Nielsen–Schreier property”, J. Algebra, 228 (2000), 603–623 | DOI | MR

[8] Klimakov A.V., Mikhalev A.A., “Pochti primitivnye elementy svobodnykh neassotsiativnykh algebr malykh rangov”, Fund. i prikl. matem., 17:1 (2012), 127–141 | MR