An approximate method for integration of ordinary differential equations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2013), pp. 43-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An approximate analytical method of solving a Cauchy problem for normal systems of ordinary differential equations is considered. The method is based on the approximation of the solution by partial sums of shifted Chebyshev series. The coefficients of the series are determined by an iterative process using Markov quadrature formulas.
@article{VMUMM_2013_6_a7,
     author = {O. B. Arushanyan and N. I. Volchenskova and S. F. Zaletkin},
     title = {An approximate method for integration of ordinary differential equations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {43--46},
     year = {2013},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a7/}
}
TY  - JOUR
AU  - O. B. Arushanyan
AU  - N. I. Volchenskova
AU  - S. F. Zaletkin
TI  - An approximate method for integration of ordinary differential equations
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 43
EP  - 46
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a7/
LA  - ru
ID  - VMUMM_2013_6_a7
ER  - 
%0 Journal Article
%A O. B. Arushanyan
%A N. I. Volchenskova
%A S. F. Zaletkin
%T An approximate method for integration of ordinary differential equations
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 43-46
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a7/
%G ru
%F VMUMM_2013_6_a7
O. B. Arushanyan; N. I. Volchenskova; S. F. Zaletkin. An approximate method for integration of ordinary differential equations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2013), pp. 43-46. http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a7/

[1] Arushanyan O.B., Volchenskova N.I., Zaletkin S.F., “O primenenii ortogonalnykh razlozhenii dlya priblizhennogo integrirovaniya obyknovennykh differentsialnykh uravnenii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2010, no. 4, 40–43 | MR

[2] Babenko K.I., Osnovy chislennogo analiza, Nauka, M., 1986 | MR

[3] Mysovskikh I.P., Lektsii po metodam vychislenii, Izd-vo S.-Peterburg. un-ta, SPb., 1998 | MR

[4] Ilin V.P., Kuznetsov Yu.I., Algebraicheskie osnovy chislennogo analiza, Nauka, Novosibirsk, 1986 | MR

[5] Arushanyan O.B., Zaletkin S.F., “O primenenii formuly chislennogo integrirovaniya Markova v ortogonalnykh razlozheniyakh”, Vestn. Mosk. un-ta. Matem. Mekhan., 2009, no. 6, 18–22 | MR

[6] Zaletkin S.F., “Formula chislennogo integrirovaniya Markova s dvumya fiksirovannymi uzlami i ee primenenie v ortogonalnykh razlozheniyakh”, Vychislitelnye metody i programmirovanie, 6:1 (2005), 141–157

[7] Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M., Chislennye metody, BINOM, M., 2007 | MR

[8] Arushanyan O.B., Zaletkin S.F., Chislennoe reshenie obyknovennykh differentsialnykh uravnenii na Fortrane, Izd-vo MGU, M., 1990 | MR