$\Delta$-graphs of polytopes in Bruns and Gubeladze $K$-theory
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2013), pp. 19-24
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			W. Bruns and J. Gubeladze introduced a new variant of algebraic $K$-theory, where \linebreak $K$-groups are additionally parametrized by polytopes of some type. In this paper we propose a notion of stable $E$-equivalence which can be used to calculate $K$-groups for high-dimensional polytopes. Polytopes which are stable $E$-equivalent have similar inner structures and isomorphic $K$-groups. In addition, for each polytope we define a $\Delta$-graph which is an oriented graph being invariant under a stable $E$-equivalence.
			
            
            
            
          
        
      @article{VMUMM_2013_6_a3,
     author = {M. V. Prikhod'ko},
     title = {$\Delta$-graphs of polytopes in {Bruns} and {Gubeladze} $K$-theory},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {19--24},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a3/}
}
                      
                      
                    M. V. Prikhod'ko. $\Delta$-graphs of polytopes in Bruns and Gubeladze $K$-theory. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2013), pp. 19-24. http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a3/
