Sets with not more than two-valued metric projection on planes
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2013), pp. 14-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a set $M$ in the Euclidean plane $\mathbb{R}^2$, we prove that if any point $x\in\mathbb{R}^2$ has one or two closest points in $M$, then each point of the convex hull of $M$ lies in the segment with endpoints in $M$.
@article{VMUMM_2013_6_a2,
     author = {A. A. Flerov},
     title = {Sets with not more than two-valued metric projection on planes},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {14--19},
     year = {2013},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a2/}
}
TY  - JOUR
AU  - A. A. Flerov
TI  - Sets with not more than two-valued metric projection on planes
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 14
EP  - 19
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a2/
LA  - ru
ID  - VMUMM_2013_6_a2
ER  - 
%0 Journal Article
%A A. A. Flerov
%T Sets with not more than two-valued metric projection on planes
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 14-19
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a2/
%G ru
%F VMUMM_2013_6_a2
A. A. Flerov. Sets with not more than two-valued metric projection on planes. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2013), pp. 14-19. http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a2/

[1] Efimov N.V., Stechkin S.B., “Nekotorye svoistva chebyshevskikh mnozhestv”, Dokl. AN SSSR, 118:1 (1958), 17–19

[2] Bunt L.N.H., Bijdrage tot de theorie der convexe puntverzamelingen, Thesis. Univ. Groningen, Amsterdam, 1934

[3] Motzkin Th., “Sur quelques proprietes caracteristiques des ensembles convexes”, Rend. Accad. Naz. Lincei, 21 (1935), 562–567

[4] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[5] Vlasov L.P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Uspekhi matem. nauk, 28:6 (1973), 3–66 | MR

[6] Karlov M.I., “Chebyshevskie mnozhestva na mnogoobraziyakh”, Tr. In-ta matem. i mekhan. UrO RAN, 4, 1996, 157–161

[7] Alimov A.R., Vsyakoe li chebyshevskoe mnozhestvo vypuklo?, Matem. prosv. Ser. 3, 2 (1998), 155-172