The angle between the stress deviator and the strain-rate deviator in a tensor nonlinear isotropic medium
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2013), pp. 63-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An expression for the angle between the symmetric stress deviator and the strain-rate deviator in a tensor nonlinear isotropic continuum is derived. A dependence of this angle on a certain orientation parameter in the three-dimensional principal strain-rate space is analyzed.
@article{VMUMM_2013_6_a13,
     author = {D. V. Georgievskii},
     title = {The angle between the stress deviator and the strain-rate deviator in a tensor nonlinear isotropic medium},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {63--66},
     year = {2013},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a13/}
}
TY  - JOUR
AU  - D. V. Georgievskii
TI  - The angle between the stress deviator and the strain-rate deviator in a tensor nonlinear isotropic medium
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 63
EP  - 66
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a13/
LA  - ru
ID  - VMUMM_2013_6_a13
ER  - 
%0 Journal Article
%A D. V. Georgievskii
%T The angle between the stress deviator and the strain-rate deviator in a tensor nonlinear isotropic medium
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 63-66
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a13/
%G ru
%F VMUMM_2013_6_a13
D. V. Georgievskii. The angle between the stress deviator and the strain-rate deviator in a tensor nonlinear isotropic medium. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2013), pp. 63-66. http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a13/

[1] Spencer A.J.M., Continuum Physics, Part III, v. 1, Theory of invariants, N.Y.–L., 1971 ; Spenser E., Teoriya invariantov, Mir, M., 1974 | MR

[2] Rivlin R.S., Ericksen J.L., “Stress-deformation relations for isotropic materials”, J. Ration. Mech. Anal., 4:2 (1955), 323–425 | MR

[3] Lokhin V.V., Sedov L.I., “Nelineinye tenzornye funktsii ot neskolkikh tenzornykh argumentov”, Prikl. matem. i mekhan., 27:3 (1963), 393–417 | MR

[4] Pobedrya B.E., Lektsii po tenzornomu analizu, Izd-vo MGU, M., 1986

[5] Dimitrienko Yu.I., Mekhanika sploshnoi sredy, v. 1, Tenzornyi analiz, Izd-vo MGTU, M., 2011

[6] Georgievskii D.V., “Tenzorno-nelineinye effekty pri izotermicheskom deformirovanii sploshnykh sred”, Uspekhi mekhan., 1:2 (2002), 150–176

[7] Georgievskii D.V., “Tenzorno-nelineinye sdvigovye techeniya: materialnye funktsii i diffuzionno-vikhrevye resheniya”, Nelineinaya dinamika, 7:3 (2011), 451–463

[8] Ilyushin A.A., Plastichnost. Osnovy obschei matematicheskoi teorii, Izd-vo AN SSSR, M., 1963 | MR

[9] Georgievskii D.V., Myuller V.Kh., Abali B.E., “Ustanovochnye eksperimenty dlya nakhozhdeniya materialnykh funktsii tenzorno-nelineinykh opredelyayuschikh sootnoshenii”, Izv. RAN. Ser. fiz., 76:12 (2012), 1534–1537