On a nonlinear isochronous system
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2013), pp. 59-63

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of nonlinear ordinal differential equations of second order is considered. It is shown analytically that the solutions of this system are isochronous, which is not characteristic for nonlinear systems. It is also shown that the periodic delta-function is a limiting case for the solution if the amplitude tends to infinity.
@article{VMUMM_2013_6_a12,
     author = {V. M. Budanov},
     title = {On a nonlinear isochronous system},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {59--63},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a12/}
}
TY  - JOUR
AU  - V. M. Budanov
TI  - On a nonlinear isochronous system
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 59
EP  - 63
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a12/
LA  - ru
ID  - VMUMM_2013_6_a12
ER  - 
%0 Journal Article
%A V. M. Budanov
%T On a nonlinear isochronous system
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 59-63
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a12/
%G ru
%F VMUMM_2013_6_a12
V. M. Budanov. On a nonlinear isochronous system. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2013), pp. 59-63. http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a12/