On a nonlinear isochronous system
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2013), pp. 59-63
Cet article a éte moissonné depuis la source Math-Net.Ru
A system of nonlinear ordinal differential equations of second order is considered. It is shown analytically that the solutions of this system are isochronous, which is not characteristic for nonlinear systems. It is also shown that the periodic delta-function is a limiting case for the solution if the amplitude tends to infinity.
@article{VMUMM_2013_6_a12,
author = {V. M. Budanov},
title = {On a nonlinear isochronous system},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {59--63},
year = {2013},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a12/}
}
V. M. Budanov. On a nonlinear isochronous system. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2013), pp. 59-63. http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a12/
[1] Chaplygin S.A., “K teorii dvizheniya negolonomnykh sistem, teorema o privodyaschem mnozhitele”, Matem. sb., 28:2 (1911), 303–314
[2] Budanov V.M., Devyanin E.A., “O dvizhenii kolesnykh robotov”, Prikl. matem. i mekhan., 67:2 (2003), 244–255 | MR
[3] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, M.–Izhevsk, 2002
[4] Andronov A.A., Leontovich E.A., Gordon I.I., Maier A.G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966 | MR