Representations of positive integers
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2013), pp. 57-59

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of representing integers as sums of terms of a certain type is actual in number theory and its applications. We are interested in the average length of these expansions and the required number of auxiliary calculations. The paper deals with DBNS, chains and the polyadic (factorial) expansions of positive integers.
@article{VMUMM_2013_6_a11,
     author = {V. G. Chirskii and V. Yu. Matveev},
     title = {Representations of positive integers},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {57--59},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a11/}
}
TY  - JOUR
AU  - V. G. Chirskii
AU  - V. Yu. Matveev
TI  - Representations of positive integers
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 57
EP  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a11/
LA  - ru
ID  - VMUMM_2013_6_a11
ER  - 
%0 Journal Article
%A V. G. Chirskii
%A V. Yu. Matveev
%T Representations of positive integers
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 57-59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a11/
%G ru
%F VMUMM_2013_6_a11
V. G. Chirskii; V. Yu. Matveev. Representations of positive integers. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2013), pp. 57-59. http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a11/