@article{VMUMM_2013_6_a1,
author = {V. A. Skvortsov and F. Tulone},
title = {Generalized {Hake} property for integrals of {Henstock} type},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {9--13},
year = {2013},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a1/}
}
V. A. Skvortsov; F. Tulone. Generalized Hake property for integrals of Henstock type. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2013), pp. 9-13. http://geodesic.mathdoc.fr/item/VMUMM_2013_6_a1/
[1] Saks S., Teoriya integrala, IL, M., 1949
[2] Lukashenko T.P., Skvortsov V.A., Solodov A.P., Obobschennye integraly, URSS, M., 2010
[3] Faure C-A., Mawhin J., “The Hake's property for some integrals over multidimensional intervals”, Real Anal. Exchange, 20:2 (1994/95), 622–630 | MR
[4] Kurzweil J., Jarnik J., “Differentiability and integrability in $n$ dimensions with respect to $\alpha$-regular intervals”, Results Math., 21 (1992), 138–151 | DOI | MR
[5] Math. Notes, 78:2 (2005), 228–233 | DOI | DOI | MR
[6] Ostaszewski K.M., Henstock integration in the plane, Mem. AMS, 63, no. 353, 1986 | MR
[7] Thomson B.S., “Derivation bases on the real line”, Real Anal. Exchange, 8:1 (1982/83), 67–207 ; 2, 278–442 | MR | MR
[8] Ahmed S.I., Pfeffer W.F., “A Riemann integral in a locally compact Hausdorff space”, Austral. Math. Soc. (Ser. A), 41 (1986), 115–137 | DOI | MR
[9] Skvortsov V.A., Tulone F., “$\mathcal P$-ichnyi integral Khenstoka v teorii ryadov po sistemam kharakterov nulmernykh grupp”, Vestn. Mosk. un-ta. Matem. Mekhan., 2006, no. 1, 25–29
[10] Skvortsov V.A., Tulone F., “Integral khenstokovskogo tipa na kompaktnom nulmernom metricheskom prostranstve i predstavlenie kvazimery”, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 2, 11–17
[11] Lee P.Y., Výborný R., The integral: an easy approach after Kurzweil and Henstock, Austral. Math. Soc. Lect. Ser., 14, Cambridge Univ. Press, Cambridge, 2000 | MR