The explicit form of the Bertrand metric
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 46-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of explicit form of the metric of revolution on Bertrand's Riemannian manifolds in particular coordinates is solved. Connections with earlier results due to M. Santoprete are discussed.
@article{VMUMM_2013_5_a8,
     author = {O. A. Zagryadskii and D. A. Fedoseev},
     title = {The explicit form of the {Bertrand} metric},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {46--50},
     year = {2013},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a8/}
}
TY  - JOUR
AU  - O. A. Zagryadskii
AU  - D. A. Fedoseev
TI  - The explicit form of the Bertrand metric
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 46
EP  - 50
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a8/
LA  - ru
ID  - VMUMM_2013_5_a8
ER  - 
%0 Journal Article
%A O. A. Zagryadskii
%A D. A. Fedoseev
%T The explicit form of the Bertrand metric
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 46-50
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a8/
%G ru
%F VMUMM_2013_5_a8
O. A. Zagryadskii; D. A. Fedoseev. The explicit form of the Bertrand metric. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 46-50. http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a8/

[1] Zagryadskii O.A., Kudryavtseva E.A., Fedoseev D.A., “Obobschenie teoremy Bertrana na poverkhnosti vrascheniya”, Matem. sb., 203:8 (2012), 39–78 | DOI | MR

[2] Santoprete M., “Gravitational and harmonic oscillator potentials on surfaces of revolution”, J. Math. Phys., 49:4 (2008), 042903 | DOI | MR

[3] Fomenko A.T., Symplectic geometry. Methods and applications, Second revised edition, Gordon and Breach, N.Y., 1995 | MR

[4] Fomenko A.T., Konyaev A.Yu., “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topol. and Its Appl., 159 (2012), 1964–1975 | DOI | MR

[5] Fomenko A.T., “Topologicheskii invariant, grubo klassifitsiruyuschii integriruemye strogo nevyrozhdennye gamiltoniany na chetyrekhmernykh simplekticheskikh mnogoobraziyakh”, Funkts. anal. i ego pril., 25:4 (1991), 23–35 | MR