@article{VMUMM_2013_5_a8,
author = {O. A. Zagryadskii and D. A. Fedoseev},
title = {The explicit form of the {Bertrand} metric},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {46--50},
year = {2013},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a8/}
}
O. A. Zagryadskii; D. A. Fedoseev. The explicit form of the Bertrand metric. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 46-50. http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a8/
[1] Zagryadskii O.A., Kudryavtseva E.A., Fedoseev D.A., “Obobschenie teoremy Bertrana na poverkhnosti vrascheniya”, Matem. sb., 203:8 (2012), 39–78 | DOI | MR
[2] Santoprete M., “Gravitational and harmonic oscillator potentials on surfaces of revolution”, J. Math. Phys., 49:4 (2008), 042903 | DOI | MR
[3] Fomenko A.T., Symplectic geometry. Methods and applications, Second revised edition, Gordon and Breach, N.Y., 1995 | MR
[4] Fomenko A.T., Konyaev A.Yu., “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topol. and Its Appl., 159 (2012), 1964–1975 | DOI | MR
[5] Fomenko A.T., “Topologicheskii invariant, grubo klassifitsiruyuschii integriruemye strogo nevyrozhdennye gamiltoniany na chetyrekhmernykh simplekticheskikh mnogoobraziyakh”, Funkts. anal. i ego pril., 25:4 (1991), 23–35 | MR