Certain sufficient conditions of uniformity for systems of functions of many-valued logic
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 41-46
Voir la notice de l'article provenant de la source Math-Net.Ru
For any finite system $A$ of functions of $k$-valued logic taking values in the set $E_s={\{0,1,\ldots, s-1\}}$, $k\geq s\geq2$, such that the closed class generated by restriction of functions from $A$ on the set $E_s$ contains a near-unanimity function, it is proved that there exists constants $c$ and $d$ such that for an arbitrary function $f \in [A]$ the depth $D_A(f)$ and the complexity $L_A(f)$ of $f$ in the class of formulas over $A$ satisfy the relation ${D_A(f) \leq c\log_2 L_A(f)+d}$.
@article{VMUMM_2013_5_a7,
author = {P. B. Tarasov},
title = {Certain sufficient conditions of uniformity for systems of functions of many-valued logic},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {41--46},
publisher = {mathdoc},
number = {5},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a7/}
}
TY - JOUR AU - P. B. Tarasov TI - Certain sufficient conditions of uniformity for systems of functions of many-valued logic JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2013 SP - 41 EP - 46 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a7/ LA - ru ID - VMUMM_2013_5_a7 ER -
P. B. Tarasov. Certain sufficient conditions of uniformity for systems of functions of many-valued logic. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 41-46. http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a7/