Certain sufficient conditions of uniformity for systems of functions of many-valued logic
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 41-46

Voir la notice de l'article provenant de la source Math-Net.Ru

For any finite system $A$ of functions of $k$-valued logic taking values in the set $E_s={\{0,1,\ldots, s-1\}}$, $k\geq s\geq2$, such that the closed class generated by restriction of functions from $A$ on the set $E_s$ contains a near-unanimity function, it is proved that there exists constants $c$ and $d$ such that for an arbitrary function $f \in [A]$ the depth $D_A(f)$ and the complexity $L_A(f)$ of $f$ in the class of formulas over $A$ satisfy the relation ${D_A(f) \leq c\log_2 L_A(f)+d}$.
@article{VMUMM_2013_5_a7,
     author = {P. B. Tarasov},
     title = {Certain sufficient conditions of uniformity for systems of functions of many-valued logic},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {41--46},
     publisher = {mathdoc},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a7/}
}
TY  - JOUR
AU  - P. B. Tarasov
TI  - Certain sufficient conditions of uniformity for systems of functions of many-valued logic
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 41
EP  - 46
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a7/
LA  - ru
ID  - VMUMM_2013_5_a7
ER  - 
%0 Journal Article
%A P. B. Tarasov
%T Certain sufficient conditions of uniformity for systems of functions of many-valued logic
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 41-46
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a7/
%G ru
%F VMUMM_2013_5_a7
P. B. Tarasov. Certain sufficient conditions of uniformity for systems of functions of many-valued logic. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 41-46. http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a7/