Prediction quality estimation for a two-phase scheme for solution of the “structure-property” problem
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 34-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is focused on methods of searching for quantitative structure property relationships for predicting the activity of chemical compounds. A two-phase scheme is proposed for solving the “structure–property” problem. An estimation of the quality of prediction with the use of a two-phase scheme is obtained. In particular, it is proved that the prediction quality is improved when using non-trivial rejection rules. Results of practical tests of the proposed method for solving the “structure–property” problem are presented, which confirm the efficiency of this approach.
@article{VMUMM_2013_5_a5,
     author = {E. I. Prokhorov},
     title = {Prediction quality estimation for a two-phase scheme for solution of the {\textquotedblleft}structure-property{\textquotedblright} problem},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {34--37},
     year = {2013},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a5/}
}
TY  - JOUR
AU  - E. I. Prokhorov
TI  - Prediction quality estimation for a two-phase scheme for solution of the “structure-property” problem
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 34
EP  - 37
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a5/
LA  - ru
ID  - VMUMM_2013_5_a5
ER  - 
%0 Journal Article
%A E. I. Prokhorov
%T Prediction quality estimation for a two-phase scheme for solution of the “structure-property” problem
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 34-37
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a5/
%G ru
%F VMUMM_2013_5_a5
E. I. Prokhorov. Prediction quality estimation for a two-phase scheme for solution of the “structure-property” problem. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 34-37. http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a5/

[1] Dzhurs O.P., Aizenauer T., Raspoznavanie obrazov v khimii, Per. s angl., Mir, M., 1977 | MR

[2] Styuper E., Bryugger U., Dzhurs P., Mashinnyi analiz svyazi khimicheskoi struktury i biologicheskoi aktivnosti, Per. s angl., Mir, M., 1982

[3] Prokhorov E.I., Ponomareva L.A., Permyakov E.A., Kumskov M.I., “Fuzzy classification and fast rules for refusal in the QSAR problem”, Pattern Recogn. and Image Anal., 21:3 (2011), 542–544 | DOI

[4] Prokhorov E.I., “Neironnye seti dlya postroeniya ogranichenii dopustimosti v zadache “struktura–svoistvo””, Neirokompyutery: razrabotka, primenenie, 2012, no. 10, 46–56

[5] Herbei R., Wegkamp M., “Classification with reject option”, Can. J. Statist., 4:4 (2006), 709–721 | DOI | MR

[6] Yuksel S.E., Wilson J.N., Gader P.D., “Twenty years of mixture of experts”, IEEE Trans. Neural Networks Learning Syst., 23:8 (2012), 1177–1193 | DOI

[7] Stone M., “Cross-validatory choice and assessment of statistical predictions”, J. Roy. Statist. Soc. B, 1974, no. 36, 111–147 | MR

[8] Amours D., Desnoyers S., Silva I., Poirier G.G., “Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions”, Biochem. J., 342:2 (1999), 249–268 | DOI

[9] Kumskov M.I., Smolenskii E.A., Ponomareva L.A., Mityushev D.F., Zefirov N.S., “Sistemy strukturnykh deskriptorov dlya resheniya zadach “struktura–svoistvo””, Dokl. RAN, 336:1 (1994), 64–66

[10] Vapnik V.N., The nature of statistical learning theory, Springer, N.Y.–L., 1998 | MR

[11] Thomas R., Karsten B., “Multilayer perceptron kernel”, Proc. 24th SIBGRAPI Conf. on Graphics, Patterns and Images (Maceio, Alagoas, Brazil, 2011), 337–343