@article{VMUMM_2013_5_a4,
author = {S. S. Nikolaenko},
title = {The number of connected components in the preimage of a regular value of the momentum mapping for the geodesic flow on ellipsoid},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {29--34},
year = {2013},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a4/}
}
TY - JOUR AU - S. S. Nikolaenko TI - The number of connected components in the preimage of a regular value of the momentum mapping for the geodesic flow on ellipsoid JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2013 SP - 29 EP - 34 IS - 5 UR - http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a4/ LA - ru ID - VMUMM_2013_5_a4 ER -
%0 Journal Article %A S. S. Nikolaenko %T The number of connected components in the preimage of a regular value of the momentum mapping for the geodesic flow on ellipsoid %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2013 %P 29-34 %N 5 %U http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a4/ %G ru %F VMUMM_2013_5_a4
S. S. Nikolaenko. The number of connected components in the preimage of a regular value of the momentum mapping for the geodesic flow on ellipsoid. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 29-34. http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a4/
[1] Yakobi K., Lektsii po dinamike, Per. s nem., Gl. red. obschetekhn. lit-ry, M.–L., 1936
[2] Mozer Dzh., “Nekotorye aspekty integriruemykh gamiltonovykh sistem”, Uspekhi matem. nauk, 36:5 (1981), 109–151 | MR
[3] Bolsinov A.V., Fomenko A.T., “Traektornaya klassifikatsiya geodezicheskikh potokov dvumernykh ellipsoidov. Zadacha Yakobi traektorno ekvivalentna integriruemomu sluchayu Eilera v dinamike tverdogo tela”, Funkts. analiz i ego pril., 29:3 (1995), 1–15 | MR
[4] Bolsinov A.V., Davison C.M., Dullin H.R., “Geodesics on the ellipsoid and monodromy”, J. Geom. Phys., 57:12 (2007), 2437–2454 | DOI | MR
[5] Davison C.M., Dullin H.R., “Geodesic flow on three dimensional ellipsoids with equal semi-axes”, Regular and Chaotic Dynamics, 12:2 (2007), 172–197 | DOI | MR
[6] Nguyen Tien Zung., “Singularities of integrable geodesic flows on multidimensional torus and sphere”, J. Geom. Phys., 18:2 (1996), 147–162 | DOI | MR
[7] Audin M., “Courbes algebriques et systemes integrables: geodesiques des quadriques”, Expos. Math., 12 (1994), 193–226 | MR
[8] Kharlamov M.P., “Topologicheskii analiz i bulevy funktsii. Metody i prilozheniya k klassicheskim sistemam”, Nelineinaya dinamika, 6:4 (2010), 769–805
[9] Arnold V.I., Kozlov V.V., Neishtadt A.I., “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 3, VINITI, M., 1985, 5–304 | MR
[10] Fomenko A.T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Dokl. AN SSSR, 287:5 (1986), 1071–1075 | MR
[11] Fomenko A.T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, Uspekhi matem. nauk, 44:1(265) (1989), 145–173 | MR
[12] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999 | MR
[13] Fomenko A.T., “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funkts. analiz i ego pril., 22:4 (1988), 38–51 | MR
[14] Fomenko A.T., “The theory of invariants of multidimensional integrable Hamiltonian systems (with arbitrary many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom”, Topological classification of integrable systems, Adv. Sov. Math., 6, Amer. Math. Soc., 1991, 1–36 | MR