The number of connected components in the preimage of a regular value of the momentum mapping for the geodesic flow on ellipsoid
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 29-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Liouville foliation of the geodesic flow of a generic ellipsoid is considered in the paper. The main goal is the demonstration of various approaches to computation of the number of connected components in the preimage of a regular value of the moment map. This is done with the use of the Boolean functions method of M. P. Kharlamov and also N. T. Zung's result on the decomposition of a hyperbolic singularity to an almost direct product of $2$-dimensional atoms.
@article{VMUMM_2013_5_a4,
     author = {S. S. Nikolaenko},
     title = {The number of connected components in the preimage of a regular value of the momentum mapping for the geodesic flow on ellipsoid},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {29--34},
     year = {2013},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a4/}
}
TY  - JOUR
AU  - S. S. Nikolaenko
TI  - The number of connected components in the preimage of a regular value of the momentum mapping for the geodesic flow on ellipsoid
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 29
EP  - 34
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a4/
LA  - ru
ID  - VMUMM_2013_5_a4
ER  - 
%0 Journal Article
%A S. S. Nikolaenko
%T The number of connected components in the preimage of a regular value of the momentum mapping for the geodesic flow on ellipsoid
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 29-34
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a4/
%G ru
%F VMUMM_2013_5_a4
S. S. Nikolaenko. The number of connected components in the preimage of a regular value of the momentum mapping for the geodesic flow on ellipsoid. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 29-34. http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a4/

[1] Yakobi K., Lektsii po dinamike, Per. s nem., Gl. red. obschetekhn. lit-ry, M.–L., 1936

[2] Mozer Dzh., “Nekotorye aspekty integriruemykh gamiltonovykh sistem”, Uspekhi matem. nauk, 36:5 (1981), 109–151 | MR

[3] Bolsinov A.V., Fomenko A.T., “Traektornaya klassifikatsiya geodezicheskikh potokov dvumernykh ellipsoidov. Zadacha Yakobi traektorno ekvivalentna integriruemomu sluchayu Eilera v dinamike tverdogo tela”, Funkts. analiz i ego pril., 29:3 (1995), 1–15 | MR

[4] Bolsinov A.V., Davison C.M., Dullin H.R., “Geodesics on the ellipsoid and monodromy”, J. Geom. Phys., 57:12 (2007), 2437–2454 | DOI | MR

[5] Davison C.M., Dullin H.R., “Geodesic flow on three dimensional ellipsoids with equal semi-axes”, Regular and Chaotic Dynamics, 12:2 (2007), 172–197 | DOI | MR

[6] Nguyen Tien Zung., “Singularities of integrable geodesic flows on multidimensional torus and sphere”, J. Geom. Phys., 18:2 (1996), 147–162 | DOI | MR

[7] Audin M., “Courbes algebriques et systemes integrables: geodesiques des quadriques”, Expos. Math., 12 (1994), 193–226 | MR

[8] Kharlamov M.P., “Topologicheskii analiz i bulevy funktsii. Metody i prilozheniya k klassicheskim sistemam”, Nelineinaya dinamika, 6:4 (2010), 769–805

[9] Arnold V.I., Kozlov V.V., Neishtadt A.I., “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 3, VINITI, M., 1985, 5–304 | MR

[10] Fomenko A.T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Dokl. AN SSSR, 287:5 (1986), 1071–1075 | MR

[11] Fomenko A.T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, Uspekhi matem. nauk, 44:1(265) (1989), 145–173 | MR

[12] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999 | MR

[13] Fomenko A.T., “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funkts. analiz i ego pril., 22:4 (1988), 38–51 | MR

[14] Fomenko A.T., “The theory of invariants of multidimensional integrable Hamiltonian systems (with arbitrary many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom”, Topological classification of integrable systems, Adv. Sov. Math., 6, Amer. Math. Soc., 1991, 1–36 | MR