The number of connected components in the preimage of a regular value of the momentum mapping for the geodesic flow on ellipsoid
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 29-34

Voir la notice de l'article provenant de la source Math-Net.Ru

A Liouville foliation of the geodesic flow of a generic ellipsoid is considered in the paper. The main goal is the demonstration of various approaches to computation of the number of connected components in the preimage of a regular value of the moment map. This is done with the use of the Boolean functions method of M. P. Kharlamov and also N. T. Zung's result on the decomposition of a hyperbolic singularity to an almost direct product of $2$-dimensional atoms.
@article{VMUMM_2013_5_a4,
     author = {S. S. Nikolaenko},
     title = {The number of connected components in the preimage of a regular value of the momentum mapping for the geodesic flow on ellipsoid},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {29--34},
     publisher = {mathdoc},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a4/}
}
TY  - JOUR
AU  - S. S. Nikolaenko
TI  - The number of connected components in the preimage of a regular value of the momentum mapping for the geodesic flow on ellipsoid
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 29
EP  - 34
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a4/
LA  - ru
ID  - VMUMM_2013_5_a4
ER  - 
%0 Journal Article
%A S. S. Nikolaenko
%T The number of connected components in the preimage of a regular value of the momentum mapping for the geodesic flow on ellipsoid
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 29-34
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a4/
%G ru
%F VMUMM_2013_5_a4
S. S. Nikolaenko. The number of connected components in the preimage of a regular value of the momentum mapping for the geodesic flow on ellipsoid. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 29-34. http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a4/