Quadratic irrationality exponents of certain numbers
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 25-29

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents upper estimates for the non-quadraticity measure of the numbers $\sqrt{2k+1}\ln\bigr((k+1-\sqrt{2k+1})/k\bigl)$ and $\sqrt{2k-1}\operatorname{arctg}\bigr(\sqrt{2k-1}/(k-1)\bigl)$, where $k\in\mathbb{N}$. In particular, we improved an upper estimate for the non-quadraticity measure of $\ln2$.
@article{VMUMM_2013_5_a3,
     author = {A. A. Polyanskii},
     title = {Quadratic irrationality exponents of certain numbers},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {25--29},
     publisher = {mathdoc},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a3/}
}
TY  - JOUR
AU  - A. A. Polyanskii
TI  - Quadratic irrationality exponents of certain numbers
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 25
EP  - 29
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a3/
LA  - ru
ID  - VMUMM_2013_5_a3
ER  - 
%0 Journal Article
%A A. A. Polyanskii
%T Quadratic irrationality exponents of certain numbers
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 25-29
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a3/
%G ru
%F VMUMM_2013_5_a3
A. A. Polyanskii. Quadratic irrationality exponents of certain numbers. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 25-29. http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a3/