Quadratic irrationality exponents of certain numbers
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 25-29
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper presents upper estimates for the non-quadraticity measure of the numbers $\sqrt{2k+1}\ln\bigr((k+1-\sqrt{2k+1})/k\bigl)$ and $\sqrt{2k-1}\operatorname{arctg}\bigr(\sqrt{2k-1}/(k-1)\bigl)$, where $k\in\mathbb{N}$. In particular, we improved an upper estimate for the non-quadraticity measure of $\ln2$.
@article{VMUMM_2013_5_a3,
author = {A. A. Polyanskii},
title = {Quadratic irrationality exponents of certain numbers},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {25--29},
publisher = {mathdoc},
number = {5},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a3/}
}
A. A. Polyanskii. Quadratic irrationality exponents of certain numbers. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 25-29. http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a3/