Quadratic irrationality exponents of certain numbers
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 25-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents upper estimates for the non-quadraticity measure of the numbers $\sqrt{2k+1}\ln\bigr((k+1-\sqrt{2k+1})/k\bigl)$ and $\sqrt{2k-1}\operatorname{arctg}\bigr(\sqrt{2k-1}/(k-1)\bigl)$, where $k\in\mathbb{N}$. In particular, we improved an upper estimate for the non-quadraticity measure of $\ln2$.
@article{VMUMM_2013_5_a3,
     author = {A. A. Polyanskii},
     title = {Quadratic irrationality exponents of certain numbers},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {25--29},
     year = {2013},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a3/}
}
TY  - JOUR
AU  - A. A. Polyanskii
TI  - Quadratic irrationality exponents of certain numbers
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 25
EP  - 29
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a3/
LA  - ru
ID  - VMUMM_2013_5_a3
ER  - 
%0 Journal Article
%A A. A. Polyanskii
%T Quadratic irrationality exponents of certain numbers
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 25-29
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a3/
%G ru
%F VMUMM_2013_5_a3
A. A. Polyanskii. Quadratic irrationality exponents of certain numbers. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 25-29. http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a3/

[1] Hata M., “$\mathbb{C}^2$-saddle method and Beukers` integral”, Trans. Amer. Math. Soc., 352:10 (2000), 4557–4583 | DOI | MR

[2] Marcovecchio R., “The Rhin–Viola method for $\log 2$”, Acta Arithm., 139:2 (2009), 147–184 | DOI | MR

[3] Polyanskii A.A., “O kvadratichnom pokazatele irratsionalnosti $\ln 2$”, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 1, 25–30 | MR

[4] Nesterenko Yu.V., “O pokazatele irratsionalnosti chisla $\ln2$”, Matem. zametki, 88:4 (2010), 549–564 | DOI

[5] Bashmakova M.G., “Estimates for the exponent of irrationality for certain numbers”, Moscow J. Comb. and Number Theory, 1:1 (2011), 67–78 | MR

[6] Polyanskii A., “On the irrationality measure of certain numbers”, Moscow J. Comb. and Number Theory, 1:4 (2011), 80–90 | MR