Simple signature based iterative algorithm for calculation of Gröbner bases
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 20-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents an algorithm for computing Groebner bases based upon labeled polynomials from the algorithm F5. The main highlight of this algorithm compared with analogues is the simplicity both of the algorithm and of its correctness proof achieved without loss of efficiency. This leads to a simple implementation which performance is in par with more complex analogues.
@article{VMUMM_2013_5_a2,
     author = {V. V. Galkin},
     title = {Simple signature based iterative algorithm for calculation of {Gr\"obner} bases},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {20--25},
     year = {2013},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a2/}
}
TY  - JOUR
AU  - V. V. Galkin
TI  - Simple signature based iterative algorithm for calculation of Gröbner bases
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 20
EP  - 25
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a2/
LA  - ru
ID  - VMUMM_2013_5_a2
ER  - 
%0 Journal Article
%A V. V. Galkin
%T Simple signature based iterative algorithm for calculation of Gröbner bases
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 20-25
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a2/
%G ru
%F VMUMM_2013_5_a2
V. V. Galkin. Simple signature based iterative algorithm for calculation of Gröbner bases. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 20-25. http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a2/

[1] Faugère J.-C., “A new efficient algorithm for computing Gröbner bases without reduction to zero (F5)”, Proc. 2002 Int. Symp. on Symbolic and Algebraic Comput., ACM, N.Y., 2002, 75–83

[2] Kreuzer M., Robbiano L., Computational commutative algebra, v. 1, Springer-Verlag, Berlin, 2000 | MR

[3] Arri A., Perry J., “The F5 criterion revised”, J. Symbol. Comput., 46:9 (2011), 1017–1029 | DOI | MR

[4] German O., “Dokazatelstvo kriteriya Fozhera dlya algoritma F5”, Matem. zametki, 88:4 (2010), 502–510 | DOI

[5] Zobnin A., “Obobschenie algoritma F5 vychisleniya bazisa Grebnera polinomialnykh idealov”, Programmirovanie, 2009, no. 2, 21–30 | MR

[6] Sun Y., Wang D., “The F5 algorithm in Buchberger's style”, J. Systems Sci. and Complexity, 24:6 (2011), 1218–1231 | DOI | MR

[7] Gao S., Guan Y., Volny F., “A new incremental algorithm for computing Gröbner bases”, Proc. 2010 Int. Symp. on Symbolic and Algebraic Comput., ACM, N.Y., 2010, 13–19 | MR

[8] Eder C., Perry J., “Signature-based algorithms to compute Gröbner bases”, Proc 36th Int. Symp. on Symbolic and Algebraic Comput., ACM, N.Y., 2011, 99–106 | MR

[9] Eder C., Perry J., “F5C: A variant of Faugère's F5 algorithm with reduced Gröbner bases”, J. Symbol. Comput., 45:12 (2010), 1442–1458 | DOI | MR

[10] Huang L., A new conception for computing Gröbner basis and its applications, arXiv: 1012.5425v2

[11] Roune B., Stillman M., “Practical Gröbner basis computation”, Proc. 2012 Int. Symp. on Symbolic and Algebraic Comput., CM, N.Y., 2012 | MR