Representation of relatively uniform and order convergence topologies by an inductive limit
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 9-20

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the concept of a topological affine space, it is proved that a partially ordered topological linear space associated with relatively uniform and order convergence can be represented by an inductive limit of its subspaces.
@article{VMUMM_2013_5_a1,
     author = {V. M. Fedorov},
     title = {Representation of relatively uniform and order convergence topologies by an inductive limit},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {9--20},
     publisher = {mathdoc},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a1/}
}
TY  - JOUR
AU  - V. M. Fedorov
TI  - Representation of relatively uniform and order convergence topologies by an inductive limit
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 9
EP  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a1/
LA  - ru
ID  - VMUMM_2013_5_a1
ER  - 
%0 Journal Article
%A V. M. Fedorov
%T Representation of relatively uniform and order convergence topologies by an inductive limit
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 9-20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a1/
%G ru
%F VMUMM_2013_5_a1
V. M. Fedorov. Representation of relatively uniform and order convergence topologies by an inductive limit. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 9-20. http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a1/