@article{VMUMM_2013_5_a0,
author = {T. F. Ismagilov},
title = {Embedding theorems for classes of functions with a dominating mixed modulus of smoothness},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--9},
year = {2013},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a0/}
}
TY - JOUR AU - T. F. Ismagilov TI - Embedding theorems for classes of functions with a dominating mixed modulus of smoothness JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2013 SP - 3 EP - 9 IS - 5 UR - http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a0/ LA - ru ID - VMUMM_2013_5_a0 ER -
T. F. Ismagilov. Embedding theorems for classes of functions with a dominating mixed modulus of smoothness. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 3-9. http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a0/
[1] Nikolskii C.M., “Funktsii s dominiruyuschei smeshannoi proizvodnoi, udovletvoryayuschei kratnomu usloviyu Geldera”, Sib. matem. zhurn., 4:6 (1963), 1342–1364
[2] Bakhvalov N.S., “Teoremy vlozheniya dlya klassov funktsii s neskolkimi ogranichennymi proizvodnymi”, Vestn. Mosk. un-ta. Matem. Mekhan., 1963, no. 3, 7–16
[3] Lizorkin P.I., Nikolskii S.M., “Klassifikatsiya differentsiruemykh funktsii na osnove prostranstv s dominiruyuschei smeshannoi proizvodnoi”, Tr. Matem. in-ta AN SSSR, 77, 1965, 143–167
[4] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, 2-e izd., Nauka, M., 1977 | MR
[5] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR
[6] Kudryavtsev N.L., “O priblizhenii funktsii tselymi funktsiyami eksponentsialnogo tipa i teoremakh vlozheniya v smeshannoi norme”, Tr. Matem. in-ta AN SSSR, 170, 1984, 191–202
[7] Potapov M.K., “Priblizhenie “uglom” i teoremy vlozheniya”, Math. balk., 2 (1972), 183–198
[8] Potapov M.K., “Teoremy vlozheniya v smeshannoi metrike”, Tr. Matem. in-ta AN SSSR, 156, 1980, 143–156
[9] Ulyanov P.L., “Teoremy vlozheniya i sootnosheniya mezhdu nailuchshimi priblizheniyami (modulyami nepreryvnosti) v raznykh metrikakh”, Matem. sb., 81(123) (1970), 104–131