Embedding theorems for classes of functions with a dominating mixed modulus of smoothness
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 3-9 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of functions with dominanted mixed modulus of smoothness is introduced in the paper. Embedding theorems are proved for this class.
@article{VMUMM_2013_5_a0,
     author = {T. F. Ismagilov},
     title = {Embedding theorems for classes of functions with a dominating mixed modulus of smoothness},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--9},
     year = {2013},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a0/}
}
TY  - JOUR
AU  - T. F. Ismagilov
TI  - Embedding theorems for classes of functions with a dominating mixed modulus of smoothness
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 3
EP  - 9
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a0/
LA  - ru
ID  - VMUMM_2013_5_a0
ER  - 
%0 Journal Article
%A T. F. Ismagilov
%T Embedding theorems for classes of functions with a dominating mixed modulus of smoothness
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 3-9
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a0/
%G ru
%F VMUMM_2013_5_a0
T. F. Ismagilov. Embedding theorems for classes of functions with a dominating mixed modulus of smoothness. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2013), pp. 3-9. http://geodesic.mathdoc.fr/item/VMUMM_2013_5_a0/

[1] Nikolskii C.M., “Funktsii s dominiruyuschei smeshannoi proizvodnoi, udovletvoryayuschei kratnomu usloviyu Geldera”, Sib. matem. zhurn., 4:6 (1963), 1342–1364

[2] Bakhvalov N.S., “Teoremy vlozheniya dlya klassov funktsii s neskolkimi ogranichennymi proizvodnymi”, Vestn. Mosk. un-ta. Matem. Mekhan., 1963, no. 3, 7–16

[3] Lizorkin P.I., Nikolskii S.M., “Klassifikatsiya differentsiruemykh funktsii na osnove prostranstv s dominiruyuschei smeshannoi proizvodnoi”, Tr. Matem. in-ta AN SSSR, 77, 1965, 143–167

[4] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, 2-e izd., Nauka, M., 1977 | MR

[5] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR

[6] Kudryavtsev N.L., “O priblizhenii funktsii tselymi funktsiyami eksponentsialnogo tipa i teoremakh vlozheniya v smeshannoi norme”, Tr. Matem. in-ta AN SSSR, 170, 1984, 191–202

[7] Potapov M.K., “Priblizhenie “uglom” i teoremy vlozheniya”, Math. balk., 2 (1972), 183–198

[8] Potapov M.K., “Teoremy vlozheniya v smeshannoi metrike”, Tr. Matem. in-ta AN SSSR, 156, 1980, 143–156

[9] Ulyanov P.L., “Teoremy vlozheniya i sootnosheniya mezhdu nailuchshimi priblizheniyami (modulyami nepreryvnosti) v raznykh metrikakh”, Matem. sb., 81(123) (1970), 104–131