Spectral properties of a Sturm–Liouville type differential operator with a retarding argument
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2013), pp. 38-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Spectral properties of a differential operator of Sturm–Liouville type are studied in the case of retarding argument with different boundary conditions. The asymptotics of solutions to the correspoding differential equation is studied in the case of summable potential. An asymptotics of eigenvalues and an asymptotics of eigenfunctions of the differential operator is calculated in each considered case.
@article{VMUMM_2013_4_a7,
     author = {S. I. Mitrokhin},
     title = {Spectral properties of a {Sturm{\textendash}Liouville} type differential operator with a retarding argument},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {38--42},
     year = {2013},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a7/}
}
TY  - JOUR
AU  - S. I. Mitrokhin
TI  - Spectral properties of a Sturm–Liouville type differential operator with a retarding argument
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 38
EP  - 42
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a7/
LA  - ru
ID  - VMUMM_2013_4_a7
ER  - 
%0 Journal Article
%A S. I. Mitrokhin
%T Spectral properties of a Sturm–Liouville type differential operator with a retarding argument
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 38-42
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a7/
%G ru
%F VMUMM_2013_4_a7
S. I. Mitrokhin. Spectral properties of a Sturm–Liouville type differential operator with a retarding argument. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2013), pp. 38-42. http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a7/

[1] Kamenskii G.A., “Ob asimptoticheskom povedenii reshenii lineinykh differentsialnykh uravnenii vtorogo poryadka s zapazdyvayuschim argumentom”, Uch. zap. MGU. Matematika, 165:7 (1954), 195–204

[2] Myshkis A.D., “Obschaya teoriya differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Uspekhi matem. nauk, 4:5(33) (1949), 99–141 | MR

[3] Myshkis A.D., “O resheniyakh lineinykh odnorodnykh differentsialnykh uravnenii vtorogo poryadka periodicheskogo tipa s zapazdyvayuschim argumentom”, Matem. sb., 28(70):1 (1951), 15–54 | MR

[4] Norkin S.B., “Kraevaya zadacha dlya differentsialnogo uravneniya vtorogo poryadka s zapazdyvayuschim argumentom”, Uch. zap. MGU. Matematika, 181:8 (1956), 59–72

[5] Elsgolts L.E., “Variatsionnye zadachi s zapazdyvayuschim argumentom”, Vestn. Mosk. un-ta. Matem. Mekhan., 1952, no. 10, 57–62

[6] Norkin S.B., Differentsialnye uravneniya vtorogo poryadka s zapazdyvayuschim argumentom, Nauka, M., 1965 | MR

[7] Pikula M., “O regulyarizovannykh sledakh differentsialnogo operatora tipa Shturma–Liuvillya s zapazdyvayuschim argumentom”, Differents. uravneniya, 25:1 (1990), 103–109

[8] Pikula M., “Opredelenie differentsialnogo operatora tipa Shturma–Liuvillya s zapazdyvayuschim argumentom po dvum spektram”, Matematichki vesnik, 43 (1991), 159–171 | MR

[9] Mitrokhin S.I., Spektralnaya teoriya operatorov: gladkie, razryvnye, summiruemye koeffitsienty, INTUIT, M., 2009

[10] Mitrokhin S.I., “Asimptotika sobstvennykh znachenii differentsialnogo operatora chetvertogo poryadka s summiruemymi koeffitsientami”, Vestn. Mosk. un-ta. Matem. Mekhan., 2009, no. 3, 14–17 | MR