Number of divisors of the central binomial coefficient
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2013), pp. 34-38

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic formulas are derived for the following expressions: $\log\tau\left(C_{2n}^{n}\right)$ and $\log \tau\bigl([1,\ldots,n]\bigr)$.
@article{VMUMM_2013_4_a6,
     author = {G. V. Fedorov},
     title = {Number of divisors of the central binomial coefficient},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {34--38},
     publisher = {mathdoc},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a6/}
}
TY  - JOUR
AU  - G. V. Fedorov
TI  - Number of divisors of the central binomial coefficient
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 34
EP  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a6/
LA  - ru
ID  - VMUMM_2013_4_a6
ER  - 
%0 Journal Article
%A G. V. Fedorov
%T Number of divisors of the central binomial coefficient
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 34-38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a6/
%G ru
%F VMUMM_2013_4_a6
G. V. Fedorov. Number of divisors of the central binomial coefficient. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2013), pp. 34-38. http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a6/