Number of divisors of the central binomial coefficient
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2013), pp. 34-38
Cet article a éte moissonné depuis la source Math-Net.Ru
Asymptotic formulas are derived for the following expressions: $\log\tau\left(C_{2n}^{n}\right)$ and $\log \tau\bigl([1,\ldots,n]\bigr)$.
@article{VMUMM_2013_4_a6,
author = {G. V. Fedorov},
title = {Number of divisors of the central binomial coefficient},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {34--38},
year = {2013},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a6/}
}
G. V. Fedorov. Number of divisors of the central binomial coefficient. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2013), pp. 34-38. http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a6/
[1] Erdös P., Graham R.L., “Old and new problems and results in combinatorial number theory”, Monogr. Enseign. math., 28 (1980) | MR
[2] Sárközy A., “On the divisors of binomial coefficients”, J. Number Theory, 20 (1985), 70–80 | DOI | MR
[3] Granville A., Ramaré O., “Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients”, Mathematika, 43 (1996), 73–107 | DOI | MR
[4] Erdös P., Graham S.W., Ivić A., Pomerance C., “On the divisors of $n!$”, Analytic Number Theory, Proc. Conf. in Honor of Heini Halberstam, v. 1, eds. B. Berndt, H. Diamond, A. Hildebrand, Birkhauser, Boston, 1996, 337–355 | DOI | MR
[5] Karatsuba A.A., Osnovy analiticheskoi teorii chisel, 2-e izd., Nauka, M., 1983 | MR