A two-parameter model of wave regimes for viscous liquid film flows
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2013), pp. 24-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Wavy flow regimes of viscous liquid films whose viscosity coefficients vary in a wide range are considered. An approximate model system of two differential equations with two external governing parameters for the layer thickness and local flow rate is derived. In this system, the viscous dissipation in the layer is taken into account more accurately than in the well-known one-parameter Shkadov model. New properties of linear and nonlinear waves caused by the hydrodynamic instability of strongly viscous liquid flow under gravity and surface tension are established.
@article{VMUMM_2013_4_a4,
     author = {V. Ya. Shkadov},
     title = {A two-parameter model of wave regimes for viscous liquid film flows},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {24--31},
     year = {2013},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a4/}
}
TY  - JOUR
AU  - V. Ya. Shkadov
TI  - A two-parameter model of wave regimes for viscous liquid film flows
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 24
EP  - 31
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a4/
LA  - ru
ID  - VMUMM_2013_4_a4
ER  - 
%0 Journal Article
%A V. Ya. Shkadov
%T A two-parameter model of wave regimes for viscous liquid film flows
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 24-31
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a4/
%G ru
%F VMUMM_2013_4_a4
V. Ya. Shkadov. A two-parameter model of wave regimes for viscous liquid film flows. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2013), pp. 24-31. http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a4/

[1] Shkadov V.Ya., “Volnovye rezhimy techeniya tonkogo sloya vyazkoi zhidkosti pod deistviem sily tyazhesti”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1967, no. 1, 43–51

[2] Shkadov V.Ya., “Uedinennye volny v sloe vyazkoi zhidkosti”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1977, no. 3, 63–66

[3] Kapitsa P.L., Kapitsa S.P., “Volnovye techeniya tonkikh sloev vyazkoi zhidkosti”, Zhurn. eksperim. i teor. fiz., 19:2 (1949), 105–120

[4] Alekseenko S.V., Nakoryakov V.Y., Pokusaev B.G., Wave flow of liquid films, Begell House Inc., N.Y., USA, 1994

[5] Shkadov V.Ya., Demekhin E.A., “Volnovye dvizheniya plenok zhidkosti na vertikalnoi poverkhnosti (teoriya dlya istolkovaniya eksperimentov)”, Uspekhi mekhaniki, 4:2 (2006), 3–65

[6] Nguyen L.T., Balakotaiah V., “Modeling and experimental studies of wave evolution on free falling viscous films”, Phys. Fluids, 12:9 (2000), 2236–2256 | DOI

[7] Meza C.E., Balakotaiah V., “Modeling and experimental studies of large amplitude waves on vertically falling films”, Chem. Eng. Sci., 63 (2008), 4704–4734 | DOI

[8] Ruyer-Quil C., Manneville P., “Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations”, Phys. Fluids, 14 (2002), 170–183 | DOI | MR

[9] Bunov A.V., Demekhin E.A., Shkadov V.Ya., “O needinstvennosti nelineinykh volnovykh reshenii v vyazkom sloe”, Prikl. matem. i mekhan., 48:4 (1984), 691–696 | MR

[10] Sisoev G.M., Shkadov V.Ya., “Razvitie dominiruyuschikh voln iz malykh vozmuschenii v stekayuschikh plenkakh vyazkoi zhidkosti”, Izv. RAN. Mekhan. zhidkosti i gaza, 1997, no. 6, 30–41 | MR

[11] Shkadov V.Y., Sisoev G.M., “Wavy falling liquid films: Theory and computations instead of physical experiment”, Nonlinear Waves in Multi-Phase Flow, IUTAM Symp. (Notre Dame, USA), Fluid Mech. and Its Appl., 57, ed. H.-C. Chang, Kluwer, Dordrecht, 2000, 1–10 | DOI | MR

[12] Shkadov V.Ya., Sisoev G.M., “Waves induced by instability in falling films of finite thickness”, Fluid Dyn. Res., 35:5 (2004), 357–389 | DOI | MR