Poincaré–Chetaev bifurcation diagrams in the problem of motion of an inhomogeneous dynamically and geometrically symmetric ellipsoid on a smooth plane
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2013), pp. 66-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of existence, stability and bifurcation of steady motions of an inhomogeneous, dynamically and geometrically symmetric ellipsoid with the shifted center of gravity located at the symmetry axis and moving on a perfectly smooth horizontal plane is considered.
@article{VMUMM_2013_4_a14,
     author = {P. A. Elkin},
     title = {Poincar\'e{\textendash}Chetaev bifurcation diagrams in the problem of motion of an inhomogeneous dynamically and geometrically symmetric ellipsoid on a smooth plane},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {66--69},
     year = {2013},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a14/}
}
TY  - JOUR
AU  - P. A. Elkin
TI  - Poincaré–Chetaev bifurcation diagrams in the problem of motion of an inhomogeneous dynamically and geometrically symmetric ellipsoid on a smooth plane
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 66
EP  - 69
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a14/
LA  - ru
ID  - VMUMM_2013_4_a14
ER  - 
%0 Journal Article
%A P. A. Elkin
%T Poincaré–Chetaev bifurcation diagrams in the problem of motion of an inhomogeneous dynamically and geometrically symmetric ellipsoid on a smooth plane
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 66-69
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a14/
%G ru
%F VMUMM_2013_4_a14
P. A. Elkin. Poincaré–Chetaev bifurcation diagrams in the problem of motion of an inhomogeneous dynamically and geometrically symmetric ellipsoid on a smooth plane. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2013), pp. 66-69. http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a14/

[1] Karapetyan A.V., Ustoichivost statsionarnykh dvizhenii, Editorial URSS, M., 1998

[2] Ivochkin M.Yu., “Topologicheskii analiz dvizheniya ellipsoida po gladkoi ploskosti”, Matem. sb., 199:6 (2008), 85–104 | DOI | MR