Refinement of a global model for the Earth's gravitational field using airborne gravimetry data
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2013), pp. 57-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of combining airborne gravimetry data with the data of a global Earth's gravitational field model is considered. The model is based on the use of spherical wavelet decompositions. The proposed approach to solving this problem is based on an optimal guaranteed estimation of spherical wavelet coefficients of the field.
@article{VMUMM_2013_4_a12,
     author = {V. S. Vyazmin},
     title = {Refinement of a global model for the {Earth's} gravitational field using airborne gravimetry data},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {57--61},
     year = {2013},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a12/}
}
TY  - JOUR
AU  - V. S. Vyazmin
TI  - Refinement of a global model for the Earth's gravitational field using airborne gravimetry data
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 57
EP  - 61
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a12/
LA  - ru
ID  - VMUMM_2013_4_a12
ER  - 
%0 Journal Article
%A V. S. Vyazmin
%T Refinement of a global model for the Earth's gravitational field using airborne gravimetry data
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 57-61
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a12/
%G ru
%F VMUMM_2013_4_a12
V. S. Vyazmin. Refinement of a global model for the Earth's gravitational field using airborne gravimetry data. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2013), pp. 57-61. http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a12/

[1] Bolotin Yu.V., Golovan A.A., Parusnikov H.A., Uravneniya aerogravimetrii. Algoritmy i rezultaty ispytanii, Izd-vo TsPI pri mekh.-mat. f-te MGU, M., 2002

[2] Fengler M.J., Freeden W., Gutting M., “Multiscale modeling from EIGEN-1S, EIGEN-2, EIGEN-GRACE01S, GGM01S, UCPH2002_0,5, EGM96: wavelet coefficients, variances and reconstruction”, Proc. 2nd CHAMP Science Meeting, Springer, Berlin–Heidelberg–N.Y., 2004, 145–150

[3] Moritz H., Advanced physical geodesy, Herbert Wichmann Verlag, Karlsruhe, 1980

[4] Freeden W., Schneider F., “Wavelet approximation on closed surfaces and their application to boundary-value problems of potential theory”, Math. Meth. Appl. Sci., 21 (1998), 129–163 | 3.0.CO;2-7 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[5] Matasov A.I., Metod garantiruyuschego otsenivaniya, Izd-vo MGU, M., 2009