Weakened continuity in $\Lambda$-variation and localization of double Cesáro means
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2013), pp. 8-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the localization of Cesáro means of negative order with respect to cross neighborhoods for a double Fourier series. We prove a sufficient condition in terms of $\Lambda$-variation of the function which is weaker than the sufficient condition for classic localization obtained recently.
@article{VMUMM_2013_4_a1,
     author = {A. N. Bakhvalov},
     title = {Weakened continuity in $\Lambda$-variation and localization of double {Ces\'aro} means},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {8--14},
     year = {2013},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a1/}
}
TY  - JOUR
AU  - A. N. Bakhvalov
TI  - Weakened continuity in $\Lambda$-variation and localization of double Cesáro means
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2013
SP  - 8
EP  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a1/
LA  - ru
ID  - VMUMM_2013_4_a1
ER  - 
%0 Journal Article
%A A. N. Bakhvalov
%T Weakened continuity in $\Lambda$-variation and localization of double Cesáro means
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2013
%P 8-14
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a1/
%G ru
%F VMUMM_2013_4_a1
A. N. Bakhvalov. Weakened continuity in $\Lambda$-variation and localization of double Cesáro means. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2013), pp. 8-14. http://geodesic.mathdoc.fr/item/VMUMM_2013_4_a1/

[1] Waterman D., “On the summability of Fourier series of functions of $\Lambda$-bounded variation”, Stud. math., 55:1 (1976), 87–95 | DOI | MR

[2] Sablin A.I., “$\Lambda$-variatsiya i ryady Fure”, Izv. vuzov. Matematika, 1987, no. 10, 66–68 | MR

[3] Bakhvalov A.N., “Summirovanie metodami Chezaro ryadov Fure funktsii iz mnogomernykh klassov Vatermana”, Dokl. RAN, 437:6 (2011), 731–733

[4] Bakhvalov A.N., “Nepreryvnost po $\Lambda$-variatsii i summirovanie metodami Chezaro kratnykh ryadov Fure”, Matem. zametki, 90:4 (2011), 483–500 | DOI

[5] Zigmund A., Trigonometricheskie ryady, v. 1, 2, Mir, M., 1965 | MR

[6] Zhizhiashvili L.V., Nekotorye voprosy teorii trigonometricheskikh ryadov Fure i ikh sopryazhennykh, Izd-vo Tbilis. un-ta, Tbilisi, 1993 | MR